首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TRAF2 is a critical adaptor molecule for TNF receptors in inflammatory and immune signaling. Upon receptor engagement, TRAF2 is recruited to CD40 and translocates to lipid rafts in a RING finger-dependent process, which enables the activation of downstream kinases. TRAF1 can displace TRAF2 and CD40 from raft fractions, and it promotes the ability of TRAF2 to sustain signal activation. Replacement of the RING finger of TRAF2 with a raft-targeting signal restores JNK activation and association with the cytoskeletal protein Filamin, but not NF-KB activation. TRAF1-/-dendritic cells show attenuated responses  相似文献   

2.
3.
Receptors belonging to the tumor necrosis factor receptor (TNF-R) family utilize cytoplasmic adapter proteins called TNF-R-associated factors (TRAFs) as key elements in their signaling pathways. However, it is not yet clear how individual TRAFs regulate signaling by this large and growing receptor family. Signaling via the TNF-R family member CD40 has recently been shown to result in recruitment of TRAF2 to plasma membrane detergent-resistant microdomains (lipid rafts) as well as to subsequently initiate TRAF2 degradation. As TRAF2 associates with most members of the TNF-R family, we wished to determine how this degradation occurs. We show here that CD40-mediated TRAF2 degradation requires the zinc-binding RING domain of TRAF2 and is preceded by TRAF2 ubiquitination, suggesting that the TRAF2 RING may promote ubiquitination although the RING itself is not a target of ubiquitination. Several approaches show that ubiquitination and proteasomal activity are integral to TRAF2 degradation, and inhibition of this process potentiates CD40 signaling.  相似文献   

4.
Characterization of LMP-1's association with TRAF1, TRAF2, and TRAF3.   总被引:16,自引:5,他引:11       下载免费PDF全文
The latent membrane protein 1 (LMP-1) of Epstein-Barr virus (EBV) contributes to the immortalizing activity of EBV in primary, human B lymphocytes. LMP-1 is targeted to the plasma membrane, where it influences signaling pathways of infected cells. LMP-1 has been found to associate with members of the tumor necrosis factor receptor-associated factor (TRAF) family of proteins. As with LMP-1, the TRAF molecules have been shown to participate in cell signaling pathways. We have characterized and mapped in detail a region of LMP-1 that associates with TRAF1, TRAF2, and TRAF3. TRAF3 alone associates with LMP-1 in a yeast two-hybrid assay, whereas all three TRAF molecules associate with LMP-1 under various conditions when they are assayed in extracts of human cells. TRAF1, TRAF2, and TRAF3 appear to associate independently with LMP-1 but bind an overlapping target site. TRAF3 associates with LMP-1 most avidly and can compete with TRAF1 and TRAF2 for binding to LMP-1. TRAF2 associates with truncated derivatives of the carboxy terminus of LMP-1 more efficiently than with the intact terminus, indicating that LMP-1's conformation may regulate its association with TRAF2. Finally, point mutations that decrease LMP-1's association with the three TRAF molecules to 3 to 20% of wild-type levels do not detectably affect otherwise intact LMP-1's induction of NF-kappaB activity. Therefore, these associations are not necessary for the majority of intact LMP-1's induction of this signaling pathway.  相似文献   

5.
6.
Tumour necrosis factor receptor (TNFR)-associated factor (TRAF) proteins are essential components of signalling pathways activated by TNFR or Toll-like receptor (TLR) family members. Acting alone or in combination, the seven known TRAFs control many biological processes, including cytokine production and cell survival. The function of one TRAF in particular, TRAF3, remained elusive for many years. Recent work has revealed that TRAF3 is a highly versatile regulator that positively controls type I interferon production, but negatively regulates mitogen-activated protein kinase activation and alternative nuclear factor-κB signalling. In this Review, we discuss our current understanding of the role of TRAF3 in TNFR and TLR signalling pathways, and its role in disease.  相似文献   

7.
8.
Tumor necrosis factor-associated factor 6 (TRAF6) is an essential adaptor protein for IL-1R or TLR-mediated NF-κB signaling pathway activation. In previous work we have found NUMBL interacts with TAB2 and negatively regulates NF-κB signaling pathway. Here, we report that NUMBL directly binds to TRAF6 in vivo and in vitro. NUMBL down-regulates TRAF6 protein level and shortens its half-life. Furthermore, knockdown of NUMBL significantly increases endogenous TRAF6 protein level in the cultured cortical neurons. In vivo ubiquitination assays indicate that NUMBL promotes the assembly of K48-linked polyubiquitination chains on TRAF6, but has no significant effect on its K63-linked polyubiquitination. Our results collectively reveal that NUMBL interacts with TRAF6 and promotes the degradation of TRAF6 in vivo, leading to the inhibition of NF-κB signaling pathway.  相似文献   

9.
10.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple mitogen-activated protein kinase (MAPK) pathways in response to growth factors, stresses and the pro-inflammatory cytokine, tumor necrosis factor (TNF). MLK3 is required for optimal activation of stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling by TNF, however, the mechanism by which MLK3 is recruited and activated by the TNF receptor remains poorly understood. Here we report that both TNF and interleukin-1β (IL-1β) stimulation rapidly activate MLK3 kinase activity. We observed that TNF stimulates an interaction between MLK3 and TNF receptor associated factor (TRAF) 2 and IL-1β stimulates an interaction between MLK3 and TRAF6. RNA interference (RNAi) of traf2 or traf6 dramatically impairs MLK3 activation by TNF indicating that TRAF2 and TRAF6 are critically required for MLK3 activation. We show that TNF also stimulates ubiquitination of MLK3 and MLK3 can be conjugated with lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitin chains. Our results suggest that K48-linked ubiquitination directs MLK3 for proteosomal degradation while K63-linked ubiquitination is important for MLK3 kinase activity. These results reveal a novel mechanism for MLK3 activation by the pro-inflammatory cytokines TNF and IL-1β.  相似文献   

11.
12.
RANK and RANKL are essential mediators of osteoclastogenesis. RANK interacts with members of the tumor necrosis factor receptor-associated factor (TRAF) family, of which TRAF6 is the critical signaling molecule. We identified a unique TRAF6-binding motif in RANK, which was subsequently co-crystallized with TRAF6 revealing distinct molecular interactions. A cell-permeable TRAF6 decoy peptide (T6DP) was shown to specifically target TRAF6 and inhibit RANKL-mediated signaling. In this study, we identified a core motif for binding to TRAF6 by generating a series of deletion mutants linked via palmitate as a means to internalize the peptide, thus making a smaller scaffold for intracellular delivery. The core motif of RKIPTEDEY inhibited RANKL-mediated osteoclastogenesis and bone resorption. In contrast, TRAF2/5 decoy peptides appeared to have no affect. Thus, disruption of the RANK-TRAF6 interaction may prove useful as a novel target for the development of a small molecule therapeutic agent for the treatment of bone-related diseases.  相似文献   

13.
TRAFs家族是一类多功能蛋白,最初是作为TNFR介导的信号通路中的转导分子而被发现的。TRAFs作为信号接头蛋白和调节分子,参与了TNFR、TLRs、NLRs和RLRs等多种受体介导的信号通路。TRAF7是最新发现的TRAF家族成员,因其保守的RING结构域,而具有E3泛素连接酶活性。此外,TRAF7还以其独特机制参与了MAP激酶、TNFR及TLR2介导的信号通路的转导,以及细胞应激、分化和凋亡等重要生理过程的调控,与乳腺癌、脑膜瘤等多种疾病的发生密切相关。结合最新研究进展对TRAF7的结构、功能及其参与的生物学过程进行综述。  相似文献   

14.
15.
16.
Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to diverse proteins. The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. PIASy is the only known SUMO E3 ligase for c-Myb. Here, we report that TRAF7 binds to c-Myb and stimulates its sumoylation. TRAF7 bound to the DNA-binding domain of c-Myb via its WD40 repeats. TRAF7 has an E3 ubiquitin ligase activity for self-ubiquitination, but TRAF7 also stimulated the sumoylation of c-Myb at Lys-523 and Lys-499, which are the same sites as those used for PIASy-induced sumoylation. TRAF7 inhibited trans-activation induced by wild-type c-Myb, but not by the sumoylation site mutant of c-Myb. The expression of both c-myb and TRAF7 was down-regulated during differentiation of M1 cells. Endogenous TRAF7 localized to both the cytoplasm and nucleus of M1 cells. Consistent with this, significant amounts of sumoylated c-Myb were found in the cytoplasm of M1 cells, whereas nonsumoylated c-Myb was found predominantly in the nucleus. Overexpressed TRAF7 was localized in the cytoplasm of CV-1 cells, and sequestered c-Myb and SUMO1 in the cytosol, whereas PIASy was localized in the nucleus. Thus, TRAF7 negatively regulates c-Myb activity by sequestering c-Myb to the cytosol via sumoylation.  相似文献   

17.
18.
Tumor necrosis factor (TNF) signaling leads to pleiotropic responses in a wide range of cell types, in part by activating antiapoptotic and proapoptotic pathways. Previous studies have suggested that TNF receptor-associated factor (TRAF) 2 can mediate crucial antiapoptotic signals during TNF stimulation. However, it is unclear how the antiapoptotic signals via TRAF2 in TNF-R1 signaling is regulated. Here we show that TRAF1 is cleaved by caspase-8 into two fragments during apoptosis induced by TNF. Overexpression of the C-terminal cleavage product, TRAF1-c, increased TNF-induced cell death of hybridoma T cells. Importantly, we demonstrate that the cleavage product of TRAF1 coimmunoprecipitates with TRAF2 that is released from the TNF-R1 complex in response to prolonged TNF treatment. These results indicate that caspase-dependent cleavage of TRAF1 generates TRAF1-c fragments that are able to bind TRAF2, and then sequester TRAF2 from the TNF-R1 complex, rendering cells, at least in part, sensitive to TNF.  相似文献   

19.
The emerging role of CD40, a tumor necrosis factor (TNF) receptor family member, in immune regulation, disease pathogenesis, and cancer therapy necessitates the analysis of CD40 signal transduction in a wide range of tissue types. In this study we present evidence that the CD40-interacting proteins TRAF2 and TRAF6 play an important physiological role in CD40 signaling in nonhemopoietic cells. Using mutational analysis of the CD40 cytoplasmic tail, we demonstrate that the specific binding of TRAF2 to CD40 is required for efficient signaling on the NF-kappaB, Jun N-terminal protein kinase (JNK), and p38 axis. In fibroblasts lacking TRAF2 or in carcinoma cells in which TRAF2 has been depleted by RNA interference, the CD40-mediated activation of NF-kappaB and JNK is significantly reduced, and the activation of p38 and Akt is severely impaired. Interestingly, whereas the TRAF6-interacting membrane-proximal domain of CD40 has a minor role in signal transduction, studies utilizing TRAF6 knockout fibroblasts and RNA interference in epithelial cells reveal that the CD40-induced activation of NF-kappaB, JNK, p38, and Akt requires the integrity of TRAF6. Furthermore, we provide evidence that TRAF6 regulates CD40 signal transduction not only through its direct binding to CD40 but also indirectly via its association with TRAF2. These observations provide novel insight into the mechanisms of CD40 signaling and the multiple roles played by TRAF6 in signal transduction.  相似文献   

20.
Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号