首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure-damaged Escherichia coli O157 cells were more acid sensitive than native cells and were impaired in pH homeostasis. However differences in acid sensitivity were not related to differences in cytoplasmic pH (pHi). Cellular β-galactosidase was more acid labile in damaged cells. Sensitization to acid may thus involve loss of protective or repair functions.  相似文献   

2.
Adaptive acid tolerance response of Streptococcus sobrinus   总被引:1,自引:0,他引:1  
Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chemostat cultures. Compared with cells grown at neutral pH, S. sobrinus cells grown at pH 5.0 showed an increased resistance to acid killing and were able to drive down the pH through glycolysis to lower values. Unlike what is found for S. mutans, the enhanced acid tolerance and glycolytic capacities of acid-adapted S. sobrinus were not due to increased F-ATPase activities. Interestingly though, S. sobrinus cells grown at pH 5.0 had twofold more glucose phosphoenolpyruvate:sugar phosphotransferase system (PTS) activity than cells grown at pH 7.0. In contrast, glucose PTS activity was actually higher in S. mutans grown at pH 7.0 than in cells grown at pH 5.0. Silver staining of two-dimensional gels of whole-cell lysates of S. sobrinus 6715 revealed that at least 9 proteins were up-regulated and 22 proteins were down-regulated in pH 5.0-grown cells compared with cells grown at pH 7.0. Our results demonstrate that S. sobrinus is capable of mounting an ATR but that there are critical differences between the mechanisms of acid adaptation used by S. sobrinus and S. mutans.  相似文献   

3.
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.  相似文献   

4.
The aims of this study were to quantify developmental differences in acid growth along the root axis and to determine whether these differences were due to alterations in cell turgor or cell wall properties. The apoplast pH of maize roots growing in hydroponics was altered from pH 7.0 to pH 3.4 using 2 mol m-3 citrate-phosphate buffer or unbuffered solutions. Whole root elongation rate rapidly increased and measurement of the local growth profile indicated that this increase in growth occurred in young cells in the accelerating zone (apical 0-4 mm) while more proximal growing cells were unaffected. Unbuffered solutions of identical pH produced qualitatively similar results. Single cell turgor pressures were unchanged between pH treatments both longitudinally and radially in the root tip. This suggests that the rapid acid-induced changes in growth rate were due to an increase in cell wall loosening. Single cell osmotic pressure and water potential were not significantly different between pH treatments. Acid pH caused net solute import at the root tip to increase 3- to 4-fold, which, coupled with the maintenance of turgor and osmotic pressure, indicated that solute import was not limiting expansion. Thus, acidic solutions cause an increase in growth in accelerating but not decelerating regions. It has been shown for the first time that acid growth in intact, growing roots is not due to differences in turgor, assigning these changes to cell wall properties. Possible cell wall biochemical alterations are discussed.  相似文献   

5.
Consequences of aspartase deficiency in Yersinia pestis.   总被引:2,自引:0,他引:2       下载免费PDF全文
Growing cells of Yersinia pseudotuberculosis, but not those of closely related Yersinia pestis, rapidly destroyed exogenous L-aspartic and L-glutamic acids, thus prompting a comparative study of dicarboxylic amino acid catabolism. Rates of amino acid metabolism by resting cells of both species were determined at pH 5.5, 7.0, and 8.5. Regardless of pH, Y. pseudotuberculosis destroyed L-glutamic acid, L-glutamine, L-aspartic acid, and L-asparagine at rates greater than those observed for Y. pestis. Although rates of proline degardation were similar, its metabolism by Y. pestis at pH 8.5 resulted in excretion of glutamic and aspartic acids. Similarly, Y. pestis excreted aspartic acid when incubated with L-glutamic acid (pH 8.5) or L-asparagine (pH 5.5, 7.0, and 8.5). Aspartase activity was not detected in extracts of 10 strains of Y. pestis but was present in all 11 isolates of Y. pseudotuberculosis. The latter contained significantly more glutaminase, asparaginase, and L-glutamate-oxalacetate transminase activity than did extracts of Y. pestis; specific activities of L-glutamate dehydrogenase and alpha-ketoglutarate dehydrogenase were similar. The observed differences in dicarboxylic amino acid metabolism are traceable to asparatase deficiency in Y. pestis and may account for the slow doubling time of this organism relative to Y. pseudotuberculosis.  相似文献   

6.
We describe the dynamics of changes in the intracellular pH (pH(i)) values of a number of lactic acid bacteria in response to a rapid drop in the extracellular pH (pH(ex)). Strains of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis were investigated. Listeria innocua, a gram-positive, non-lactic acid bacterium, was included for comparison. The method which we used was based on fluorescence ratio imaging of single cells, and it was therefore possible to describe variations in pH(i) within a population. The bacteria were immobilized on a membrane filter, placed in a closed perfusion chamber, and analyzed during a rapid decrease in the pH(ex) from 7.0 to 5.0. Under these conditions, the pH(i) of L. innocua remained neutral (between 7 and 8). In contrast, the pH(i) values of all of the strains of lactic acid bacteria investigated decreased to approximately 5.5 as the pH(ex) was decreased. No pronounced differences were observed between cells of the same strain harvested from the exponential and stationary phases. Small differences between species were observed with regard to the initial pH(i) at pH(ex) 7.0, while different kinetics of pH(i) regulation were observed in different species and also in different strains of S. thermophilus.  相似文献   

7.
Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR.  相似文献   

8.
The effects of perfusion with 2.7 and 26 mM undissociated acetic acid in the absence or presence of glucose on short-term intracellular pH (pH(i)) changes in individual Saccharormyces cerevisiae and Zygosaccharomyces bailii cells were studied using fluorescence-ratio-imaging microscopy and a perfusion system. In the S. cerevisiae cells, perfusion with acetic acid induced strong short-term pH(i) responses, which were dependent on the undissociated acetic acid concentration and the presence of glucose in the perfusion solutions. In the Z. bailii cells, perfusion with acetic acid induced only very weak short-term pH(i) responses, which were neither dependent on the undissociated acetic acid concentration nor on the presence of glucose in the perfusion solutions. These results clearly show that Z. bailii is more resistant than S. cerevisiae to short-term pH(i) changes caused by acetic acid.  相似文献   

9.
Lactobacillus casei ATCC 4646 and Actinomyces viscosus OMZ105E were found to differ markedly in acid tolerance. For example, pH profiles for glycolysis of intact cells in dense suspensions indicated that glycolysis by L. casei had an optimal pH of about 6.0 and that glucose degradation was reduced by 50% at a pH of 4.2. Comparable values for A. viscosus cells were at pHs of about 7.0 and 5.6. The difference in acid tolerance appeared to depend mainly on membrane physiology, and the addition of 40 microM gramicidin to cell suspensions increased the sensitivity of the glycolytic system by as much as 1.5 pH units for L. casei and up to 0.5 pH unit for A. viscosus. L. casei cells were inherently somewhat more resistant to severe acid damage than were A. viscosus cells, in that Mg release from L. casei cells in medium with a pH of 3.0 occurred only after a lag of some 4 h, compared with rapid release from A. viscosus cells. However, the major differences pertinent to the physiology of the organisms appeared to be related to proton-translocating ATPases. Isolated membranes of L. casei had about 3.29 U of ATPase per mg of protein, compared with only about 0.06 U per mg of protein for those of A. viscosus. Moreover, the ATPase of L. casei had a pH optimum for hydrolytic activity of about 5, compared with an optimal pH of about 7 for that of A. viscosus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Lactobacillus casei ATCC 4646 and Actinomyces viscosus OMZ105E were found to differ markedly in acid tolerance. For example, pH profiles for glycolysis of intact cells in dense suspensions indicated that glycolysis by L. casei had an optimal pH of about 6.0 and that glucose degradation was reduced by 50% at a pH of 4.2. Comparable values for A. viscosus cells were at pHs of about 7.0 and 5.6. The difference in acid tolerance appeared to depend mainly on membrane physiology, and the addition of 40 microM gramicidin to cell suspensions increased the sensitivity of the glycolytic system by as much as 1.5 pH units for L. casei and up to 0.5 pH unit for A. viscosus. L. casei cells were inherently somewhat more resistant to severe acid damage than were A. viscosus cells, in that Mg release from L. casei cells in medium with a pH of 3.0 occurred only after a lag of some 4 h, compared with rapid release from A. viscosus cells. However, the major differences pertinent to the physiology of the organisms appeared to be related to proton-translocating ATPases. Isolated membranes of L. casei had about 3.29 U of ATPase per mg of protein, compared with only about 0.06 U per mg of protein for those of A. viscosus. Moreover, the ATPase of L. casei had a pH optimum for hydrolytic activity of about 5, compared with an optimal pH of about 7 for that of A. viscosus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
研究有机缓冲剂用于耐酸根瘤菌选择   总被引:1,自引:0,他引:1  
五种缓冲剂对根瘤菌生长的酵母汁—阿拉伯糖—半乳糖培养基(YAG)低pH的缓冲作用进行了测定。30.7mM2[N-吗啉]乙醇磺酸(MES)具有维持pH(5.5或4.9)基本不变的缓冲能力,且根瘤菌数从10~(3-4)增加到10~9/ml.适用于耐酸的花生、大翼豆快生型根瘤菌选择。30mM的其它缓冲剂与慢生型根瘤菌的耐酸能力测定结果指出:苯甲酸(BA)pH6.0抑制根瘤菌生长;琥珀酸(SA)、柠檬酸(CA)pH变化较大;邻苯二甲酸氢钾(PHP)虽然在pH5.52条件下具有强的缓冲能力,且能区分菌株的生长差异,但在更低pH(4.5以下)条件下,则使根瘤菌生长受到抑制。  相似文献   

12.
Summary Fathead minnows, Pimephales promelas, were exposed for 129 days to Lake Superior water acidified with sulfuric acid by means of a flow-through toxicant injection system. The effects of chronic acid stress (pH 6.5, 6.0, 5.5, 5.0) on gill histology were examined. Most of the histological effects were seen at pH 5.5 and 5.0 and were confined primarily to changes in numbers, distribution, and morphology of chloride cells. At low pH levels there tend to be more chloride cells in the gill epithelium and an increased percentage of these cells in the secondary lamellae. In contrast to normal chloride cells, chloride cells from fish exposed to low pH frequently had apical pits while some had bulbous apical evaginations. The occurrence of structural changes in chloride cells during exposure to acid water suggests that chloride cells may be involved in acclimation to acid stress.  相似文献   

13.
Neal, A. L. (Rutgers, The State University, New Brunswick, N.J.), Joan O. Weinstock, and J. Oliver Lampen. Mechanisms of fatty acid toxicity for yeast. J. Bacteriol. 90:126-131. 1965.-The internal pH of stationary- and log-phase yeast cells dropped quite rapidly when the cells were exposed to acetate buffers at pH 4 and 3, whereas no, or much less, acidification occurred with pyruvate or phosphate. Although inhibition of respiration and glycolysis was almost instantaneous when the cells were exposed to 0.2 m acetate at pH 4, the effect was not permanent and could be reversed by washing them with water or phosphate buffer. Irreversible inhibition did occur, however, at 0.5 m acetate under the same conditions; there was a marked decrease in several glycolytic enzyme systems, which undoubtedly contributed to the irreversible nature of the inhibition. In cell-free homogenates, various low-molecular-weight monocarboxylic acids exhibited about the same inhibitory effect on glycolysis; structural differences such as branching or unsaturation did not cause a marked change in their inhibitory effect. Also, glycolysis was much more sensitive to dicarboxylic acids such as succinate and phthalate than to acetate; phthalate was more inhibitory than succinate. This is in contrast with the noninhibitory nature of succinate and phthalate to whole cells, even at pH 4. Pyruvic acid decarboxylation was inhibited by phthalate but not by succinate. The greater toxic effect of phthalic acid may be due to the fixed steric configuration of its carboxyl groups, as compared with those of succinic acid.  相似文献   

14.
Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies. A surprising degree of variety was found between three related genera. The minimum growth pH of Salmonella typhimurium was shown to be significantly lower (pH 4.0) than that of either Escherichia coli (pH 4.4) or Shigella flexneri (pH 4.8), yet E. coli and S. flexneri both survive exposure to lower pH levels (2 to 2.5) than S. typhimurium (pH 3.0) in complex medium. S. typhimurium and E. coli but not S. flexneri expressed low-pH-inducible log-phase and stationary-phase acid tolerance response (ATR) systems that function in minimal or complex medium to protect cells to pH 3.0. All of the organisms also expressed a pH-independent general stress resistance system that contributed to acid survival during stationary phase. E. coli and S. flexneri possessed several acid survival systems (termed acid resistance [AR]) that were not demonstrable in S. typhimurium. These additional AR systems protected cells to pH 2.5 and below but required supplementation of minimal medium for either induction or function. One acid-inducible AR system required oxidative growth in complex medium for expression but successfully protected cells to pH 2.5 in unsupplemented minimal medium, while two other AR systems important for fermentatively grown cells required the addition of either glutamate or arginine during pH 2.5 acid challenge. The arginine AR system was only observed in E. coli and required stationary-phase induction in acidified complex medium. The product of the adi locus, arginine decarboxylase, was responsible for arginine-based acid survival.  相似文献   

15.
Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR.  相似文献   

16.
Studies with Ehrlich ascites tumor cells showed that small decreases in the pH of the incubation medium from 7.4 increase the magnitude of incorporation of free fatty acid (FFA) into the cells from an albumin solution. A similar effect occurred when rabbit erythrocytes, rat heart slices, or rat liver slices were incubated with FFA-bovine albumin solutions and when tumor cells were incubated with FFA in media containing human albumin, -lactoglobulin, or rat plasma. The effect was not seen when the medium contained no protein. When the pH of the albumin-containing medium was lowered from 7.4 to 6.6, oxidation of FFA to CO(2) by the tumor cells increased, esterification of the FFA (mostly into phospholipids and triglycerides) increased, and less esterified radio-active fatty acid was depleted from the cells. Hence, more fatty acid accumulated in the cells in more acid media. These findings suggest that small changes in extracellular pH might regulate FFA utilization and lipid accumulation in mammalian tissues.  相似文献   

17.
Kwon YM  Ricke SC 《Anaerobe》1998,4(6):251-256
Propionic acid is commonly found as a fermentation product in the gastrointestinal tracts of food animals and has also been used to limit the microbial contaminants in animal feeds. Because propionic acid is known to have antibacterial activity, the propionic acid encountered by foodborne pathogens during their life cycles may play an important role in inhibiting the survival of the pathogens. The survival patterns of Salmonella typhimurium poultry isolate were determined both in aerobic and anaerobic tryptic soy broth (TSB; pH 5.0 or 7.0) containing various concentrations of propionic acid (0-200 mM). The levels of recovered cells were consistently greater at pH 7.0 compared to those at pH 5.0. For the first 4 days, the levels were significantly decreased by incubation under anaerobic conditions as compared to aerobic condition at pH 7.0 (P<0.05). However, there were fluctuations of cell populations with different patterns depending on both concentrations and growth conditions. To characterize the nature of the capability which allowed the cell multiplication following decreases in cell population during incubation at pH 7.0, the cells isolated from the outgrowth cultures were tested for survival in aerobic or anaerobic TSB (pH 5.0 or pH 7.0) containing propionic acid (50 mM). The outgrowth isolates did not show significant differences in the level of recovered cells in the presence of propionic acid when compared to the wild type strain (P>0.05), suggesting that the cells in the outgrowth cultures did not harbour mutation(s) conferring increased resistance to propionic acid. In addition, the level of recovered cells of isogenic rpoS mutant strain of S. typhimurium was not significantly different from that of the wild type strain in the same assay conditions (P<0.05). The results of this study show that the bactericidal activity of propionic acid on S. typhimurium can be affected by environmental conditions such as acidic pH levels and anaerobiosis in food materials and gastrointestinal tracts. However, S. typhimurium is also able to multiply in the presence of sublethal concentrations of propionic acid at neutral pH during prolonged incubation under both aerobic and anaerobic conditions.  相似文献   

18.
The arginine deiminase system was found to function in protecting bacterial cells against the damaging effects of acid environments. For example, as little as 2.9 mM arginine added to acidified suspensions of Streptococcus sanguis at a pH of 4.0 resulted in ammonia production and protection against killing. The arginine deiminase system was found to have unusual acid tolerance in a variety of lactic acid bacteria. For example, for Streptococcus rattus FA-1, the pH at which arginolysis was reduced to 10% of the maximum was between 2.1 and 2.6, or more than 1 full pH unit below the minimum for glycolysis (pH 3.7), and more than 2 units below the minimum for growth in complex medium (pH 4.7). The acid tolerance of the arginine deiminase system appeared to be primarily molecular and to depend on the tolerance of individual enzymes rather than on the membrane physiology of the bacteria; pH profiles for the activities of arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase in permeabilized cells showed that the enzymes were active at pHs of 3.1 or somewhat lower. Overall, it appeared that ammonia could be produced from arginine at low pH values, even by cells with damaged membranes, and that the ammonia could then protect the cells against acid damage until the environmental pH value rose sufficiently to allow for the reestablishment of a difference in pH (delta pH) across the cell membrane.  相似文献   

19.
The arginine deiminase system was found to function in protecting bacterial cells against the damaging effects of acid environments. For example, as little as 2.9 mM arginine added to acidified suspensions of Streptococcus sanguis at a pH of 4.0 resulted in ammonia production and protection against killing. The arginine deiminase system was found to have unusual acid tolerance in a variety of lactic acid bacteria. For example, for Streptococcus rattus FA-1, the pH at which arginolysis was reduced to 10% of the maximum was between 2.1 and 2.6, or more than 1 full pH unit below the minimum for glycolysis (pH 3.7), and more than 2 units below the minimum for growth in complex medium (pH 4.7). The acid tolerance of the arginine deiminase system appeared to be primarily molecular and to depend on the tolerance of individual enzymes rather than on the membrane physiology of the bacteria; pH profiles for the activities of arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase in permeabilized cells showed that the enzymes were active at pHs of 3.1 or somewhat lower. Overall, it appeared that ammonia could be produced from arginine at low pH values, even by cells with damaged membranes, and that the ammonia could then protect the cells against acid damage until the environmental pH value rose sufficiently to allow for the reestablishment of a difference in pH (delta pH) across the cell membrane.  相似文献   

20.
The effect of bicarbonate on the ability of cells to regulate the internal pH after acid and alkali loads was studied. In the presence of Na+, the normalization of the internal pH after acid loads occurred more rapidly in the presence than in the absence of bicarbonate. DIDS (4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) strongly inhibited the pH increase, whereas amiloride inhibited it to a lesser extent. The Na+-linked, bicarbonate-dependent pHi increase after an acid load was strongly reduced in cells depleted of Cl-. When cells were transferred to gluconate or mannitol balanced buffers containing bicarbonate, there was a rapid alkalinization of the cytosol, apparently due to influx of bicarbonate induced by chloride efflux. When the internal pH was below 7.0, the pH increase was much more rapid in the presence than in the absence of Na+, whereas at higher internal pH, there was no measurable effect of Na+. The ability of the cells to reduce the internal pH after an alkali load was increased in the presence of bicarbonate. The data indicate that both Na+-linked and Na+-independent bicarbonate/chloride exchange occur in Vero cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号