首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dose-response relationships for inducing translocations in the spermatogonia of mice were studied, and they were compared for 200 kVp X-rays and 2 MeV fast neutrons. The dose response for fast neutrons was markedly convex; more precisely, the response obtained was linear in the dose range from 24 to 94 rad with a regression coefficient of 11.36·10?4, but decreased for a further increase in dose up to 267 rad. On the other hand, that for X-rays showed a linear dose-response relationship from 48 to 672 rad with a regression coefficient of 2.69·10?4. The relative biological effectiveness for inducing translocations in the spermatogonia of mice was compared for the linear parts of the dose response in both types of radiation, and the relative biological effectiveness (RBE) value was 4.22.  相似文献   

2.
3.
4.
5.
Biological effectiveness of fast neutrons of a mean energy of 22 MeV obtained by the reaction d[50 MeV]----Be, measured by the death rate, was substantially lower than that of division spectrum neutrons of a mean energy of 1.2 MeV. LD50/30 of the division spectrum neutrons was within 2.57 +/- 0.07 Gy and that of 22 MeV fast neutrons 4.79 +/- 0.13 Gy. The RBE coefficient for the studied neutrons was 1.34 +/- 0.05 as estimated by LD50/30 and 1.5 +/- 0.1 as determined by D37 for a cell model of radiation affection.  相似文献   

6.
7.
8.
9.
10.
The relative biological effectiveness (RBE) of neutrons and other types of densely ionizing radiation appears to be close to 1.0 for the induction of strand breaks, but considerably higher RBEs have been found for cellular end points such as colony-forming ability. This may be due to differences in the processing of strand breaks or to the involvement of other lesions whose yields are more dependent on radiation quality. Because cell cycle delays may be of great importance in the processing of DNA damage, we determined the RBE for disturbances of the G1 phase in four different cell types (Be11 melanoma, 4197 squamous cell carcinoma, EA14 glioma, GM6419 fibroblasts) and compared them with the RBE for cell inactivation. The method we used to determine the progress from G1 into S was as follows: Cells were serum-deprived for a number of days and then stimulated to grow with culture medium containing normal amounts of serum. Immediately before the change of medium, cells were exposed to graded doses of either 240 kV X rays or 6 MeV neutrons. At different times afterward, cells were labeled with BrdU and the numbers of active S-phase cells were assessed using two-parameter flow cytometry. For all four cell types, cells started to progress from G1 into S after a few hours. Radiation suppressed this process in all cases, but there were some interesting differences. For Be11 and 4197 cells, the most obvious effect was a delay in G1; the labeling index increased a few hours later in irradiated samples than in controls, and there was no significant effect on the maximum labeling index. For EA14 and GM6419 cells, although smaller doses were used because of greater radiosensitivity, a delay of the entry into S phase was again noticeable, but the most significant effect was a reduction in the maximum percentage of active S-phase cells after stimulation, indicating a permanent or long-term arrest in G1. The RBE for the G1 delay was the same for all four cell types, about 2.8, while the RBE for the G1 arrest varied between 3.2 for the most resistant Be11 cells and 1.7 for the most sensitive GM6419 cells. This trend was similar to that observed for the RBE for cell inactivation. If, as described above, the same number of strand breaks per dose is induced by neutrons and by X rays, the signal transduction cascade translates them into a greater G1 delay in the case of higher LET. This appears to be independent of repair capacity, because it is similar in all cell types we investigated. We therefore assume that a higher lesion density or the presence of other types of lesions is important for this relatively early effect. A G1 arrest, however, is more closely related to the later events leading to cell inactivation, where strand break repair does play a major role, influencing X-ray sensitivity more strongly than sensitivity to neutrons because of a lower repairability of lesions induced by higher-LET radiation.  相似文献   

11.
RBE of p(34) + Be, p(45) + Be, p(65), + Be, p(75) + Be and d(50) + Be neutron beams produced at the cyclotron "Cyclone" of Louvain-la-Neuve were measured. The biological criterion was the regeneration of the crypts of the intestinal mucosa (50 regenerated crypts per circumference) after abdominal irradiation in mice. Taking the p(65) + Be neutrons as reference, RBE values were found equal to 1.12, 1.07, 1.00 (Ref.), 0.96 and 1.02 respectively. These results are consistent with those published for cell lethality in vitro. However, the RBE variation is smaller than this previously obtained in the laboratory for growth inhibition in Vicia faba.  相似文献   

12.
The long-term effects of ionizing radiation on male gonads may be the result of damage to spermatogonial stem cells. Doses of 10 cGy to 15 Gy (60)Co gamma rays or 10 cGy to 7 Gy 14 MeV neutrons were given to NMRI mice as single or split doses separated by a 24-h interval. The ratios of haploid spermatids/2c cells and the coefficients of variation of DNA histogram peaks as measures of both the cytocidal and the clastogenic actions of radiation were analyzed by DNA flow cytometry after DAPI staining. The coefficient of variation is not only a statistical examination of the data but is also used here as a measure of residual damage to DNA (i.e. a biological dosimeter). Testicular histology was examined in parallel. At 70 days after irradiation, the relative biological effectiveness for neutrons at 50% survival of spermatogonial stem cells was 3.6 for single doses and 2.8 for split doses. The average coefficient of variation of unirradiated controls of elongated spermatids was doubled when stem cells were irradiated with single doses of approximately 14 Gy (60)Co gamma rays or 3 Gy neutrons and observed 70 days later. Split doses of (60)Co gamma rays were more effective than single doses, doubling DNA dispersion at 7 Gy. No fractionation effect was found with neutrons with coefficients of variation.  相似文献   

13.
14.
15.
V A Lisin 《Radiobiologiia》1989,29(3):399-402
A study was made of the dependence of relative biological effectiveness (RBE) and isoeffective dose of fast neutrons (produced by U-120 cyclotron) upon the depth of the exposed tissue. It was shown that the isoeffective dose and RBE vary significantly with the depth of the tissue-equivalent medium. The investigations were carried out with the purpose of improving the radiobiological and dosimetric techniques for the treatment of malignant tumors using a neutron beam from U-120 cyclotron.  相似文献   

16.
17.
18.
Following whole-body irradiation of ICR mice with various doses of fission neutrons or X-rays, the frequency of micronuclei (MNs) in peripheral blood reticulocytes was measured at 12 h intervals beginning immediately after irradiation and ending at 72 h after irradiation. The resulting time-course curve of MN frequency had a clear peak 36 h after irradiation, irrespective of the type of radiation applied and the dose used. The MN frequency, averaged as the unweighted mean over the experimental time course, showed a linear increase with increasing dose of either fission neutrons or X-rays. The linear response to X-rays supports reported conclusion that induction of MN formation in reticulocytes is a dose-rate independent phenomenon. The relative biological effectiveness (RBE) of fission neutrons to X-rays for MN induction was estimated to be 1.9 +/- 0.3. This value is considerably lower than the RBE value of 4.6 +/- 0.5 reported for the same fission neutrons for induction of lymphocyte apoptosis in the thymus of ICR mice that represents dose-rate independent, one-track event. Based on these results, we propose that MNs increased in reticulocytes after irradiation mostly represent acentric fragments caused by single chromosome breaks, and that some confounding factor is operating in erythroblasts for the formation of aberrations from non-rejoining DNA double-strand breaks more severely after high-LET radiation than after low-LET radiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号