首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In macrophages, Nramp1 (Slc11a1) is expressed in lysosomes and restricts replication of intracellular pathogens by removing divalent metals (Mn2+ and Fe2+) from the phagolysosome. Nramp2 (DMT1, Slc11a2) is expressed both at the duodenal brush border where it mediates uptake of dietary iron and ubiquitously at the plasma membrane/recycling endosomes of many cell types where it transports transferrin-associated iron across the endosomal membrane. In Nramp2, a carboxyl-terminal cytoplasmic motif ((555)YLLNT(559)) is critical for internalization and recycling of the transporter from the plasma membrane. Here we studied the subcellular trafficking properties of Nramp1 and investigated the cis-acting sequences responsible for targeting to lysosomes. For this, we constructed and studied Nramp1/Nramp2 chimeric proteins where homologous domains of each protein were exchanged. Chimeras exchanging the amino-(upstream TM1) and carboxyl-terminal (downstream TM12) cytoplasmic segments of both transporters were stably expressed in porcine LLC-PK1 kidney cells and were studied with respect to expression, maturation, stability, cell surface targeting, transport activity, and subcellular localization. An Nramp2 isoform II chimera bearing the amino terminus of Nramp1 was not expressed at the cell surface but was targeted to lysosomes. This lysosomal targeting was abolished by single alanine substitutions at Tyr15 and Ile18 of a (15)YGSI(18) motif present in the amino terminus of Nramp1. These results identify YGSI as a tyrosine-based sorting signal responsible for lysosomal targeting of Nramp1.  相似文献   

2.
Lam-Yuk-Tseung S  Gros P 《Biochemistry》2006,45(7):2294-2301
The metal transporter DMT1 (Slc11a2) plays a vital role in iron metabolism. Alternative splicing of the 3' exon generates two DMT1 isoforms with different C-terminal protein sequences and a 3' untranslated region harboring (isoform I, +IRE) or not (isoform II, -IRE), an iron-responsive element. Isoform I is expressed at the plasma membrane of certain epithelial cells including the duodenum brush border, where it is essential for the absorption of nutritional iron. Isoform II is expressed in many cells and is essential for the acquisiton of transferrin iron from acidified endosomes. The targeting and trafficking properties of DMT1 isoforms I and II were studied in transfected LLC-PK(1) kidney cells, with respect to isoform-specific differences in function, subcellular localization, endocytosis kinetics, and fate upon internalization. Isoform I showed higher surface expression and was internalized from the plasma membrane with slower kinetics than that of isoform II. As opposed to isoform II, which is efficiently sorted to recycling endosomes upon internalization, isoform I was not efficiently recycled and was targeted to lysosomes. Thus, alternative splicing of DMT1 critically regulates the subcellular localization and site of Fe(2+) transport.  相似文献   

3.
4.
Lamp1 is a type I transmembrane glycoprotein that is localized primarily in lysosomes and late endosomes. Newly synthesized molecules are mostly transported from the trans-Golgi network directly to endosomes and then to lysosomes. A minor pathway involves transport via the plasma membrane. The 11-amino acid cytoplasmic tail of lamp1 contains a tyrosine-based motif that has been previously shown to mediate sorting in the trans-Golgi network and rapid internalization at the plasma membrane. We studied whether this motif also mediates sorting in endosomes. We found that mutant forms of lamp1 in which all the amino acids of the cytoplasmic tail were modified except for the RKR membrane anchor and the YXXI sorting motif still localized to dense lysosomes, indicating that the YXXI motif is sufficient to confer proper intracellular targeting. However, when the spacing of the YXXI motif relative to the membrane was changed by deleting one amino acid or adding five amino acids, lysosomal targeting was almost completely abolished. Kinetic studies showed that these mutants were trapped in a recycling pathway, involving trafficking between the plasma membrane and early endocytic compartments. These findings indicate that the YXXI signal of lamp1 is recognized at several sorting sites, including the trans-Golgi network, the plasma membrane, and the early/sorting endosomes. Small changes in the spacing of this motif relative to the membrane dramatically impair sorting in the early/sorting endosomes but have only a modest effect on internalization at the plasma membrane. The spacing of sorting signals relative to the membrane may prove to be an important determinant in the functioning of these signals.  相似文献   

5.
Nramp2, also known as DMT1 and DCT1, is a 12-transmembrane (TM) domain protein responsible for dietary iron uptake in the duodenum and iron acquisition from transferrin in peripheral tissues. Nramp2/DMT1 produces by alternative splicing two isoforms differing at their C terminus (isoforms I and II). The subcellular localization, mechanism of action, and destination of divalent cations transported by the two Nramp2 isoforms are not completely understood. Stable CHO transfectants expressing Nramp2 isoform II modified by addition of a hemaglutinin epitope in the loop defined by the TM7-TM8 interval were generated. Immunofluorescence with permeabilized and intact cells established that Nramp2 isoform II is expressed at the plasma membrane and demonstrated the predicted extracytoplasmic location of the TM7-TM8 loop. Using the fluorescent, metal-sensitive dye calcein, and a combination of membrane-permeant and -impermeant iron chelators, Nramp2 transport was measured and quantitated with respect to kinetic parameters and at steady state. Iron transport at the plasma membrane was time- and pH-dependent, saturable, and proportional to the amount of Nramp2 expression. Iron uptake by Nramp2 at the plasma membrane was into the nonferritin-bound, calcein-accessible so-called "labile iron pool." Ion selectivity experiments show that Nramp2 isoform II can also transport Co(2+) and Cd(2+) but not Mg(2+) into the calcein-accessible pool. Parallel experiments with transfectants expressing the lysosomal Nramp1 homolog do not show any divalent cation transport activity, establishing major functional differences between Nramp1 and Nramp2. Monitoring the effect of Nramp2 on the calcein-sensisitve labile iron pool allows a simple, rapid, and nonisotopic approach to the functional study of this protein.  相似文献   

6.
Endocytic motifs in the carboxyl terminus of cystic fibrosis transmembrane conductance regulator (CFTR) direct internalization from the plasma membrane by clathrin-mediated endocytosis. However, the fate of such internalized CFTR has remained unknown. Internalized membrane proteins can be either targeted for degradation or recycled back to the plasma membrane. Using cell surface biotinylation and antibody uptake studies, we show that CFTR undergoes constitutive endocytosis and recycling back to the plasma membrane. Expression of dominant negative Rme-1 (a protein that regulates exit from the endosomal recycling compartment) in CFTR-expressing cells results in the expansion of recycling compartments. Transferrin, a marker for the endosomal recycling compartment, and CFTR accumulate in these enlarged recycling endosomes. Such accumulation leads to a loss of cell surface CFTR because it is prevented from being recycled back to the cell surface. In contrast, traffic of the low-density lipoprotein (LDL) is unaffected by the expression of dominant negative Rme-1. In addition, chimeras containing the extracellular domain of the transferrin receptor and the carboxyl terminal tail of CFTR also enter Rme-1-regulated recycling compartments and accumulate in these compartments containing dominant negative Rme-1, suggesting that in addition to endocytic signals, the carboxyl terminal tail of CFTR also contains intracellular traffic information.  相似文献   

7.
Endothelin-converting enzyme (ECE) is a membrane metalloprotease that generates endothelin from its direct precursor big endothelin. Four isoforms of ECE-1 are produced from a single gene through the use of alternate promoters. These isoforms share the same extracellular catalytic domain and contain unique cytosolic tails, which results in their specific subcellular targeting. We investigated the distribution of ECE-1 isoforms in transfected AtT-20 neuroendocrine cells. Whereas ECE-1a and 1c were present at the plasma membrane, ECE-1b and ECE-1d were retained inside the cells. We found that both intracellular isoforms were concentrated in the endosomal system: ECE-1d in recycling endosomes, and ECE-1b in late endosomes/multivesicular bodies. Leucine-based motifs were involved in the intracellular retention of these isoforms, and the targeting of ECE-1b to the degradation pathway required an additional signal in the N terminus. The concentration of ECE-1 isoforms in the endosomal system suggested new functions for these enzymes. Potential novel functions include redistribution of other isoforms through direct interaction. We have showed that ECE-1 isoforms could heterodimerize, and that in such heterodimers the ECE-1b targeting signal was dominant. Interaction of a plasma membrane isoform with ECE-1b resulted in its intracellular localization and decreased its extracellular activity. These data demonstrated that the targeting signals specific for ECE-1b constitute a regulatory domain per se that could modulate the localization and the activity of other isoforms.  相似文献   

8.
Nramp2 (natural resistance-associated macrophage protein 2, also called DMT1 and Slc11a2) is a proton-dependent cation transporter, which plays a central role in iron homeostasis. To study the subcellular distribution and dynamics of the transporter, we generated a construct encoding the long splice variant of Nramp2 (isoform II) tagged with the hemagglutinin epitope on a predicted extracellular loop. Cells stably transfected with this construct revealed the presence of Nramp2 in both the plasma membrane and in an endomembrane compartment. By labeling the exofacial epitope with a pH-sensitive fluorescent indicator, we were able to establish that this variant of Nramp2 resides in a vesicular compartment with an acidic lumen (pH 6.2) and that acidification was maintained by vacuolar-type ATPases. Dual labeling experiments identified this compartment as sorting and recycling endosomes. Kinetic studies by surface labeling with 125I-labeled antibodies established that the fraction of endomembrane Nramp2 was approximately equal to that on the cell surface. The two components are in dynamic equilibrium: surface transporters are internalized continuously via a clathrin and dynamin-dependent process, whereas endosomal Nramp2 is recycled to the plasmalemma by a phosphatidylinositol 3-kinase-dependent exocytic process. Depletion of cholesterol had no discernible effect on Nramp2 internalization, suggesting that rafts or caveolae are not essential. Because the pH at the cell surface and in endosomes differs by >or=1 unit, the rates of transport of Nramp2 at the surface and in endomembrane compartments will differ drastically. Their subcellular colocalization and parallel trafficking suggest that Nramp2 and transferrin receptors are functionally coupled to effect pH-dependent iron uptake across the endosomal membrane.  相似文献   

9.
Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors.  相似文献   

10.
The carboxyl terminus of the type 1 angiotensin II receptor (AT(1)) plays an important role in receptor phosphorylation, desensitization, and internalization. The yeast two-hybrid system was employed to isolate proteins associated with the carboxyl terminal region of the AT(1A) receptor. In the present study, we report the isolation of a novel protein, ARAP1, which promotes recycling of AT(1A) to the plasma membrane in HEK-293 cells. ARAP1 cDNA encodes a 493-amino-acid protein and its mRNA is ubiquitously expressed in rat tissues. A complex of ARAP1 and AT(1A) was observed by immunoprecipitation and Western blotting in HEK-293 cells. In the presence of ARAP1, recycled AT(1A) showed a significant Ca(2+) release response to a second stimulation by Ang II 30 min after the first treatment. Immunocytochemical analysis revealed co-localization of recycled AT(1A) and ARAP1 in the plasma membrane 45 min after the initial exposure to Ang II. Taken together, these results indicate a role for ARAP1 in the recycling of the AT(1) receptor to the plasma membrane with presumable concomitant recovery of receptor signal functions.  相似文献   

11.
Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.  相似文献   

12.
A complete set of chimeras was made between the lysosomal membrane glycoprotein LEP100 and the plasma membrane-directed vesicular stomatitis virus G protein, combining a glycosylated lumenal or ectodomain, a single transmembrane domain, and a cytosolic carboxyl-terminal domain. These chimeras, the parent molecules, and a truncated form of LEP100 lacking the transmembrane and cytosolic domains were expressed in mouse L cells. Only LEP100 and chimeras that included the cytosolic 11 amino acid carboxyl terminus of LEP100 were targeted to lysosomes. The other chimeras accumulated in the plasma membrane, and truncated LEP100 was secreted. Chimeras that included the extracellular domain of vesicular stomatitis G protein and the carboxyl terminus of LEP100 were targeted to lysosomes and very rapidly degraded. Therefore, in chimera-expressing cells, virtually all the chimeric molecules were newly synthesized and still in the biosynthesis and lysosomal targeting pathways. The behavior of one of these chimeras was studied in detail. After its processing in the Golgi apparatus, the chimera entered the plasma membrane/endosome compartment and rapidly cycled between the plasma membrane and endosomes before going to lysosomes. In pulse-expression experiments, a large population of chimeric molecules was observed to appear transiently in the plasma membrane by immunofluorescence microscopy. Soon after protein synthesis was inhibited, this surface population disappeared. When lysosomal proteolysis was inhibited, chimeric molecules accumulated in lysosomes. These data suggest that the plasma membrane/early endosome compartment is on the pathway to the lysosomal membrane. This explains why mutations that block endocytosis result in the accumulation of lysosomal membrane proteins in the plasma membrane.  相似文献   

13.
The mannose 6-phosphate/insulin-like growth factor-II (Man-6-P/IGF-II) receptor is known to cycle between the Golgi, endosomes, and the plasma membrane. In the Golgi the receptor binds newly synthesized lysosomal enzymes and transports them directly to an endosomal (prelysosomal) compartment without traversing the plasma membrane. Deletion of the carboxyl-terminal Leu-Leu-His-Val residues of the 163 amino acid cytoplasmic tail of the bovine Man-6-P/IGF-II receptor partially impaired this function, resulting in the diversion of a portion of the receptor-ligand complexes to the cell surface, where they were endocytosed. The same phenotype was observed when 134 residues of the cytoplasmic tail were deleted from the carboxyl terminus. Disruption of the Tyr24-Lys-Tyr-Ser-Lys-Val29 plasma membrane internalization signal alone had little effect on Golgi sorting, but when combined with either deletion resulted in a complete loss of this function. The mutant receptors retained the ability to recycle to the Golgi and bind cathepsin D. These results indicate that the cytoplasmic tail of the Man-6-P/IGF-II receptor contains two signals that contribute to Golgi sorting, presumably by interacting with the Golgi clathrin-coated pit adaptor proteins. The Leu-Leu-containing sequence represents a novel motif for mediating interaction with Golgi adaptor proteins.  相似文献   

14.
CTLA-4 is one of the most important negative regulators of the T cell immune response. However, the subcellular distribution of CTLA-4 is unusual for a receptor that interacts with cell surface transmembrane ligands in that CTLA-4 is rapidly internalized from the plasma membrane. It has been proposed that T cell activation can lead to stabilization of CTLA-4 expression at the cell surface. Here we have analyzed in detail the internalization, recycling, and degradation of CTLA-4. We demonstrate that CTLA-4 is rapidly internalized from the plasma membrane in a clathrin- and dynamin-dependent manner driven by the well characterized YVKM trafficking motif. Furthermore, we show that once internalized, CTLA-4 co-localizes with markers of recycling endosomes and is recycled to the plasma membrane. Although we observed limited co-localization of CTLA-4 with lysosomal markers, CTLA-4 was nonetheless degraded in a manner inhibited by lysosomal blockade. T cell activation stimulated mobilization of CTLA-4, as judged by an increase in cell surface expression; however, this pool of CTLA-4 continued to endocytose and was not stably retained at the cell surface. These data support a model of trafficking whereby CTLA-4 is constitutively internalized in a ligand-independent manner undergoing both recycling and degradation. Stimulation of T cells increases CTLA-4 turnover at the plasma membrane; however, CTLA-4 endocytosis continues and is not stabilized during activation of human T cells. These findings emphasize the importance of clathrin-mediated endocytosis in regulating CTLA-4 trafficking throughout T cell activation.  相似文献   

15.
Johnson DM  Yamaji S  Tennant J  Srai SK  Sharp PA 《FEBS letters》2005,579(9):1923-1929
A number of regulatory factors including dietary iron levels can dramatically alter the expression of the intestinal iron transporter DMT1. Here we show that Caco-2 cells exposed to iron for 4h exhibited a significant decrease in plasma membrane DMT1 protein, though total cellular DMT1 levels were unaltered. Following biotinylation of cell surface proteins, there was a significant increase in intracellular biotin-labelled DMT1 in iron-exposed cells. Furthermore, iron-treatment increased levels of DMT1 co-localised with LAMP1, suggesting that the initial response of intestinal epithelial cells to iron involves internalisation and targeting of DMT1 transporter protein towards a late endosomal/lysosomal compartment.  相似文献   

16.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

17.
The endocytic pathway of eukaryotes is essential for the internalization and trafficking of macromolecules, fluid, membranes, and membrane proteins. One of the most enigmatic aspects of this process is endocytic recycling, the return of macromolecules (often receptors) and fluid from endosomes to the plasma membrane. We have previously shown that the EH-domain protein RME-1 is a critical regulator of endocytic recycling in worms and mammals. Here we identify the RAB-10 protein as a key regulator of endocytic recycling upstream of RME-1 in polarized epithelial cells of the Caenorhabditis elegans intestine. rab-10 null mutant intestinal cells accumulate abnormally abundant RAB-5-positive early endosomes, some of which are enlarged by more than 10-fold. Conversely most RME-1-positive recycling endosomes are lost in rab-10 mutants. The abnormal early endosomes in rab-10 mutants accumulate basolaterally recycling transmembrane cargo molecules and basolaterally recycling fluid, consistent with a block in basolateral transport. These results indicate a role for RAB-10 in basolateral recycling upstream of RME-1. We found that a functional GFP-RAB-10 reporter protein is localized to endosomes and Golgi in wild-type intestinal cells consistent with a direct role for RAB-10 in this transport pathway.  相似文献   

18.
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush‐border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.  相似文献   

19.
To visualize and investigate the regulation of the localization patterns of Gs and an associated receptor during cell signaling, we produced functional fluorescent fusion proteins and imaged them in HEK-293 cells. alphas-CFP, with cyan fluorescent protein (CFP) inserted into an internal loop of alphas, localized to the plasma membrane and exhibited similar receptor-mediated activity to that of alphas. Functional fluorescent beta1gamma7 dimers were produced by fusing an amino-terminal yellow fluorescent protein (YFP) fragment to beta1 (YFP-N-beta1) and a carboxyl-terminal YFP fragment to gamma7 (YFP-C-gamma7). When expressed together, YFP-N-beta1 and YFP-C-gamma7 produced fluorescent signals in the plasma membrane that were not seen when the subunits were expressed separately. Isoproterenol stimulation of cells co-expressing alphas-CFP, YFP-N-beta1/YFP-C-gamma7, and the beta2-adrenergic receptor (beta2AR) resulted in internalization of both fluorescent signals from the plasma membrane. Initially, alphas-CFP and YFP-N-beta1/YFP-C-gamma7 stained the cytoplasm diffusely, and subsequently they co-localized on vesicles that exhibited minimal overlap with beta2AR-labeled vesicles. Moreover, internalization of beta2AR-GFP, but not alphas-CFP or YFP-N-beta1/YFP-C-gamma7, was inhibited by a fluorescent dominant negative dynamin 1 mutant, Dyn1(K44A)-mRFP, indicating that the Gs subunits and beta2AR utilize different internalization mechanisms. Subsequent trafficking of the Gs subunits and beta2AR also differed in that vesicles labeled with the Gs subunits exhibited less overlap with RhoB-labeled endosomes and greater overlap with Rab11-labeled endosomes. Because Rab11 regulates traffic through recycling endosomes, co-localization of alphas and beta1gamma7 on these endosomes may indicate a means of recycling specific alphasbetagamma combinations to the plasma membrane.  相似文献   

20.
Rho GTPases are key regulators of actin dynamics. We report that the Rho GTPase TCL, which is closely related to Cdc42 and TC10, localizes to the plasma membrane and the early/sorting endosomes in HeLa cells, suggesting a role in the early endocytic pathway. Receptor-dependent internalization of transferrin (Tf) is unaffected by suppression of endogenous TCL by small interfering RNA treatment. However, Tf accumulates in Rab5-positive uncoated endocytic vesicles and fails to reach the early endosome antigen-1-positive early endosomal compartments and the pericentriolar recycling endosomes. Moreover, Tf release upon TCL knockdown is significantly slower. Conversely, in the presence of dominant active TCL, internalized Tf accumulates in early endosome antigen-1-positive early/sorting endosomes and not in perinuclear recycling endosomes. Tf recycles directly from the early/sorting endosomes and it is normally released by the cells. The same phenotype is generated by replacing the C terminus of dominant active Cdc42 and TC10 with that of TCL, indicating that all three proteins share downstream effector proteins. Thus, TCL is essential for clathrin-dependent endocytosed receptors to enter the early/sorting endosomes. Furthermore, the active GTPase favors direct recycling from early/sorting endosomes without accumulating in the perinuclear recycling endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号