首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of cytochrome P-450 of 17 alpha-hydroxylase/C17-C20 lyase (P-450(17 alpha, lyase] and the changes of the enzyme activity were studied immunocytochemically and biochemically in the ovaries of immature rats treated with PMSG (pregnant mare serum gonadotropin) and hCG (human chorionic gonadotropin). Immunocytochemically, P-450(17 alpha, lyase) was localized in both the theca interna cells and interstitial gland cells of the ovaries of immature rats treated with PMSG for 48 h. After hCG administration, the immunoreactive cells rapidly decreased in number in the PMSG-pretreated rat ovary. Namely, 6 h after the hCG injection, positive staining for P-450(17 alpha, lyase) was recognized only in a few theca interna cells, while 12 h after the injection to immunostained cells were detected in the ovary. Forty-eight hours after the hGC treatment (96 h after the PMSG injection), most of the theca interna cells and the interstitial gland cells became immunopositive for P-450(17 alpha, lyase) again. The 17 alpha-hydroxylating activity of P-450(17 alpha, lyase) was 0.5, 0.22 and 0.03 nmol/min/mg protein in the ovarian microsomes of PMSG-treated, PMSG + hCG(3 h)-treated and PMSG + hCG(6 h)-treated rats, respectively. Changes of the hydroxylase activities in all the experimental groups are almost parallel to those of P-450 contents in the microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
beta-Endorphin was measured by radioimmunoassay in homogenates of ovaries from immature Sprague-Dawley rats (21-29 days of age) and found to be present at levels of about 0.6-0.7 ng/ovary. After administration of PMSG there was approximately a 4-fold increase (2-3 ng/ovary) in total ovarian immunoreactive (ir) beta-endorphin 48 h after injection. Analysis of follicular fluid from similarly treated rats indicated about the same amount of ovarian ir-beta-endorphin (2-3 ng/ovary) as in ovarian homogenates, suggesting that most of the ir-beta-endorphin is localized in follicular fluid of PMSG-primed immature rats. Immature rats were made pseudopregnant by administration of hCG 48 h after PMSG, and at 24 h after injection of hCG there was a slight, but significant and reproducible, increase in the ovarian content of ir-beta-endorphin. The serum concentration of ir-beta-endorphin was in the range of 1-3 ng/ml and was unaffected by PMSG and PMSG/hCG; likewise, the pituitary content of ir-beta-endorphin did not change following administration of gonadotrophins to immature rats. In mature cyclic animals, levels of 2-4 ng ir-beta-endorphin/ovary were found, comparable to those in the ovaries of PMSG-primed immature rats, and there were only small changes during the oestrous cycle. In addition to ir-beta-endorphin, we also obtained evidence for the presence of alpha-N-acetylated opioid peptides (endorphins or enkephalins) in the ovaries of PMSG-primed immature and mature rats. The physiological role of the opioid peptides in reproductive tissue is unknown, but they are presumably acting in an autocrine or paracrine fashion.  相似文献   

4.
Gonadotropic hormones PMSG (15 IU/rat), FSH (3 g/rat), LH (9 g/rat) and hCG (3 g/rat) were shown to decrease the free cytosolic lysosomal enzymes during the acute phase of hormone action in rat ovaries. When isolated cells from such rats were analyzed for the cathepsin-D activity, the granulosa cells of the ovary showed a reduction in the free as well as in the total lysosomal enzyme activities in response to FSH/PMSG; the stromal and thecal compartment of the ovary showed a reduction only in the free activity in response to hCG/PMSG. The results suggest the presence of two distinct, target cell specific, mechanisms by which the lysosmal activity of the ovary is regulated by gonadotropins.Abbreviations PMSG pregnant mare serum gonadotropin - FSH follicle stimulating hormone - LH luteinizing hormone - hCG human chorionic gonadotropin - GC granulosa cells - S/T stromal and thecal cells  相似文献   

5.
The amounts of [1-5]-bradykinin in ovary extracts were determined using gonadotropin-treated immature female mice. The bradykinin levels in the ovary were high at 2, 6, and 48 hr after injection of human chorionic gonadotropin (hCG) into pregnant mare's serum gonadotropin (PMSG)-treated mice. Northern blot analysis of total RNAs isolated from the PMSG/hCG-treated mouse ovaries indicated that the B(2) receptor mRNA was constitutively expressed. Bradykinin B(2) receptor protein was detected by Western blot analysis of the ovary extracts. In situ hybridization analysis revealed that the B(2) receptor mRNA is expressed in the granulosa cells of all growing follicles of ovaries from both gonadotropin-treated immature and mature female mice. The effect of bradykinin on the expression of the B(2) receptor gene was examined by RT-PCR analysis with the ovary previously cultured in the presence of bradykinin. Bradykinin treatment of immature female, gonadotropin-treated immature female, and mature female mouse ovaries brought about no apparent changes in the B(2) receptor mRNA level. The present data indicate that the level of B(2) receptor expression in the ovary is fairly constant, and that the biological effect elicited by bradykinin in this organ may be dependent upon concentrations of the ligand produced by operation of the kinin-kallikrein system.  相似文献   

6.
7.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

8.
We reported the presence of a 80 kDa polypeptide in porcine follicular fluid that inhibited the binding of 125I-radiolabelled hFSH as well as hCG to the rat ovarian gonadotropin receptors. In the present study, the biological activity of the receptor binding inhibitor is determined using an in vitro bioassay procedure. Granulosa cells isolated from PMSG primed immature rat ovaries respond to exogenously added gonadotropins in terms of progesterone production. Addition of fractions containing the gonadotropin receptor binding inhibitory activity inhibited progesterone production stimulated by the gonadotropins in a dose-dependent fashion. The receptor binding inhibitory activity was also capable of inhibiting progesterone production stimulated by PMSG, which has both FSH- and LH-like activities in rats. In contrast, progesterone production stimulated by dbcAMP was not inhibited by the receptor binding inhibitor. This result indicates that the site of action of the inhibitor is proximal to the formation of the cAMP. The above observations point out to a possible role for this factor in modulating gonadotropin activity at the ovarian level.  相似文献   

9.
To evaluate the regulation of ovarian insulin-like growth factor-I (IGF-I) during follicular growth in vivo, we measured the concentration of this peptide in follicular fluid (FFL) of immature gilts during the induction of follicular development by pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). FFL concentrations of immunoreactive (i) IGF-I were compared with those of intrafollicular steroids and with concentrations of iIGF-I, estradiol (E2), and porcine growth hormone (GH) in serum. PMSG, administered at Time 0, induced a significant (p less than 0.01), time-dependent increase in intrafollicular iIGF-I that peaked 72 h after administration of the hormone, before the administration of hCG. During the first 72 h, the changes in ovarian iIGF-I paralleled those for progesterone and E2. After the administration of hCG at 72 h, FFL levels of E2 fell, those of iIGF-I remained constant, and progesterone rose. Serum E2 concentrations paralleled those in FFL. Since serum GH and IGF-I levels rise during spontaneous puberty in some species, these levels were also monitored. However, a significant treatment effect on serum GH and iIGF-I was not demonstrated. In summary, ovarian concentrations of iIGF-I are increased by gonadotropic hormones in vivo. The absence of concomitant changes in circulating levels of iIGF-I and GH suggests that the gonadotropin effects are exerted directly on the ovary. These results, together with more abundant data regarding secretion and action of IGF-I in cultured granulosa cells, suggest that IGF-I may function in an autocrine or paracrine fashion to amplify the actions of gonadotropins at an ovarian level.  相似文献   

10.
Debeljuk L 《Peptides》2003,24(9):1445-1448
In this investigation, substance P (SP) and neurokinin A (NKA) concentrations have been determined in the ovary of control prepubertal mice, and prepubertal mice injected with pregnant mare serum (PMS) gonadotropin, an equine gonadotropin with predominant FSH action, or with PMS followed by human chorionic gonadotropin (hCG), which produces heavily luteinized ovaries after the stimulation with PMS. Control animals were injected with saline. The ovaries of animals treated with gonadotropins were heavier than the control ovaries, the combination of PMS plus hCG produced significantly heavier ovaries than PMS alone. The concentrations of SP and NKA in the ovaries of the animals treated with PMS or PMS/hCG were significantly lower than in control ovaries. No significant differences in ovarian tachykinin concentrations were observed between PMS and PMS/hCG-treated animals. The total ovarian content of SP was lower in PMS-injected animals as compared with the controls. The total ovarian content of NKA was not significantly different in the three groups of animals studied. These results show that ovaries stimulated with gonadotropins have lower concentrations of tachykinins than normal ovaries at the same age. It is therefore evident that gonadotropins can affect tachykinin stores in the ovaries of mice.  相似文献   

11.
We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs.  相似文献   

12.
The purpose of this work was to investigate the effects of gonadotropin on the production capacity of ovarian 13,14-dihydro-prostaglandin F2-alpha (13,14H2-PGF2 alpha) and whether or not this capacity had any relation to the process of ovulation in rat. To induce the first ovulation, immature rats were injected subcutaneously with PMSG (5 IU/rat) at 8:00 at 26 days of age and some of these rats were followed by an intraperitoneal injection of hCG (10 IU/rat) at 57 hrs after PMSG treatment. The 13,14H2-PGF2 alpha production capacity was unchanged as compared with vehicle control until 57 hrs after PMSG treatment. However, the capacity showed a striking increase at 60 hrs after PMSG treatment. A maximal increase of about 7 fold was observed at 9 hrs after hCG injection just before ovulation. The production capacity of the Graafian follicle (GF) and the part (WO-GF) of the whole ovary (WO) from which the GF is removed at 2:00 on day 29 and the capacity of early corpus luteum at 8:00 on day 29 was greater than that of GF and WO-GF at 0:00 on day 29. These results suggest that the 13,14H2-PGF2 alpha production capacity in rat ovary is regulated by gonadotropin and is closely associated with the process of ovulation.  相似文献   

13.
Based on techniques developed for the domestic cat, in vitro fertilization (IVF) studies were conducted in the taxonomically related leopard cat (Felis bengalensis). Adult females received pregnant mares' serum gonadotropin (PMSG) followed 80 or 84 h later by human chorionic gonadotropin (hCG) on two to four occasions over a 40-day to 27-month interval. Oocytes were collected laparoscopically from ovarian follicles 25-27 h after hCG and co-cultured with processed, homologous spermatozoa (37 degrees C, 5% CO2 in air, humidified atmosphere) for 30-36 h. There was no apparent ovarian refractoriness to repeated treatments with exogenous gonadotropins. Overall, the mean number of mature follicles present and the total number of oocytes and proportion of immature oocytes collected did not differ (P greater than 0.05) between the 80 h (4.9 +/- 0.9; 4.7 +/- 1.2; 14.9%, respectively) and 84 h (5.6 +/- 1.4; 5.4 +/- 1.7; 22.2%, respectively) gonadotropin interval groups. However, the proportion of mature leopard cat oocytes fertilized in vitro, as determined by embryonic cleavage, was increased (P less than 0.005) by extending the interval between PMSG and hCG from 80 (17.5%) to 84 (52.4%) h. These data 1) demonstrate that, compared to the domestic cat, the ovaries of the leopard cat are less responsive to a given PMSG/hCG treatment; 2) indicate that leopard cat follicular oocytes can be recovered readily by laparoscopy and are capable of becoming fertilized in vitro; and 3) suggest that IVF may be a viable approach for producing embryos and perhaps enhancing captive propagation of rare Felidae.  相似文献   

14.
We administered either saline (group A) or 10 IU of pregnant mare serum gonadotropin (PMS; groups B and C) to female immature rats. Fifty-three hours later, the rats were injected with saline (groups A and B) or 30 IU of human chorionic gonadotropin (hCG; group C). The rats were decapitated 17 h after the last treatment, and the serum levels of progesterone (P4) and estradiol (E2) were measured by specific radioimmunoassays (RIA). The receptor levels of progesterone (PR) and estrogen (ER) in the uterus and ovaries were measured and the dissociation constant (Kd) of PR was obtained. The highest serum level of P4 was found in group C and that of E2 in group B. Cytosol levels of PR and ER in the uterus and ovary of the group B were the highest. It was indicated that the PMS treated-group (B), which had developing follicles in the ovary and the high serum level of E2, showed the highest concentration of ER and PR in both the ovary and the uterus. In the PMS and hCG-treated group (C), the uterine and ovarian steroid receptors decreased probably because of the luteinization and the high serum level of P4. The Kd uterine PR value was less than that of ovarian PR.  相似文献   

15.
16.
The ovary and adenohypophysis of the rat contain beta-adrenergic receptors and respond to beta-adrenergic stimulation with hormone release. To determine the importance of the adrenal medulla as a source of adrenergic influences regulating prepubertal ovarian and pituitary function, a technique was developed to remove most of the adrenal medulla without compromising adrenocortical function. Medullectomy (MED) of 24-day-old female rats depressed both spontaneous diurnal changes in plasma epinephrine (EPI), and the EPI and norepinephrine (NE) response to decapitation, without affecting corticosterone (B) levels. Vaginal opening and first ovulation were delayed in MED rats. Serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were normal in MED rats, but those of growth hormone (GH) and prolactin (Prl) were depressed. MED reduced the ovarian weight response to pregnant mare's serum gonadotropin (PMSG) and the ovarian steroidal response to human chorionic gonadotropin (hCG) in vitro, but it did not affect ovarian beta-adrenergic receptors. Cultured granulosa cells, harvested from juvenile ovaries and primed in vitro with FSH, responded to nanomolar concentrations of EPI with progesterone (P) secretion. EPI also augmented hCG- and FSH-induced P secretion. The EPI effect was reproduced by Zinterol, a beta 2-adrenergic agonist and was prevented by propranolol, a beta-adrenergic antagonist. Blockade of alpha-adrenergic receptors with phentolamine was ineffective. It is suggested that EPI of adrenomedullary origin supports female prepubertal development by a) stimulating ovarian P secretion, b) favoring Prl and GH release and c) amplifying the stimulatory effect of low gonadotropin levels on ovarian steroidogenesis. The effects of EPI on ovarian function appear to be mediated by beta-adrenergic receptors of the beta 2 type.  相似文献   

17.
The preovulatory LH surge induces a remarkable increase in ovarian prostaglandins (PGs) which help to mediate the ovulatory process. We investigated whether cytosolic phospholipase A2 (cPLA2) has a role in this PG production in PMSG/hCG-primed immature rats. The immunoreactive signal for cPLA2 was localized in both thecal and granulosa layers of mature follicles and became evident in response to gonadotropins. The PLA2 activity in the whole ovarian cytosol rose slightly after PMSG stimulation, persisted relatively constant until 24 h after hCG injection and thereafter increased gradually. Intra-ovarian bursal injection of arachidonyl trifluoromethyl ketone, a specific inhibitor for cPLA2 ( 1.0-3.0 mg/ovary), significantly reduced ovarian PGE2 content and the ovulation rate. These results suggest that cPLA2 exists in periovulatory follicles and functions in PG production related to the ovulation process.  相似文献   

18.
Genetic engineering of miniature pigs has facilitated the development of numerous biomedical applications, such as xenotransplantation and animal models for human diseases. Manipulation of the estrus is one of the essential techniques for the generation of transgenic offspring. The purpose of the present study was to establish a useful method for induction of the estrus in miniature gilts. A total of 38 pubertal miniature gilts derived from 4 different strains were treated with exogenous gonadotropins. Estrus and ovulatory response were examined after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as 200 IU PMSG and 100 IU hCG, 300 IU PMSG and 150 IU hCG, or 1,500 IU PMSG only, followed by 100, 150 or 750 IU hCG 72 h later, respectively. The optimal protocol was determined to be the combination treatment of 200 IU PMSG and 100 IU hCG followed by 100 IU hCG. The administration of 200 IU PMSG and 100 IU hCG was effective in inducing estrus regardless of the strain, although there was a strain difference in the ovulatory response. These results indicate that treatment with a low-dose combination of PMSG and hCG provides one of the simplest methods for induction of estrus and ovulation in pubertal miniature pigs.  相似文献   

19.
Three studies were conducted to investigate the endocrine and ovulatory responses of the prepubertal gilt to exogenous estradiol and gonadotropins. In Study One, prepubertal gilts of 190 days of age were injected s.c. with pregnant mare's serum gonadotropin (PMSG) or physiological saline (SAL). Following PMSG injection, circulating levels of estradiol-17 beta (E2) increased. This increase was followed by a surge of luteinizing hormone (LH), estrus, a rise in progesterone (P4) levels, and ovulation. None of the gilts given SAL had increased levels of E2, LH or P4, and none ovulated. In Study Two, prepubertal gilts of 165 days of age were treated with varying doses of PMSG. A positive correlation was observed between dose of PMSG and peak levels of E2 (r = 0.83, P less than 0.001) and between dose of PMSG and number of corpora lutea (r = 0.96, P less than 0.001). In Study Three, gilts were treated at ages of 70 to 190 days with estradiol benzoate (EB), PMSG, or corn oil plus saline (CO/SAL) followed in 72 to 96 h by human chorionic gonadotropin (hCG) or SAL. All gilts treated with EB at 100 to 175 days of age had two surges of LH at an approximately 24-h interval. Gilts responding to EB at 70 and 190 days had only one surge of LH. Gilts of 100 days of age or older responded to PMSG with a single surge or two surges of LH. Ovulation in response to treatment was observed in gilts of 100 days of age or greater but not at 70 days. The conclusions drawn from these studies are that 1) PMSG-induced ovulation is preceded by an increase in circulating levels of E2 and in some gilts by a surge of LH, and 2) prepubertal gilts are able to respond to exogenous endocrine stimulation with either a single surge or multiple surges of LH at 70 to 190 days but are unable to ovulate in response to exogenous gonadotropins until 100 days of age.  相似文献   

20.
A concomitant increase in the activity of LH-senstive adenylate cyclase and in the number of LH/hCG binding sites was induced in ovaries of immature rats upon administration of pregnant mare serum gonadotropin (PMSG), a hormone preparation known to have predominantly follicle stimulation (FSH-like) activity. When an optimal dose of PMSG (15 i.u./rat) was administered to 25-day-old rats, specific activity of LH-dependent adenylate cyclase and the number of binding sites for LH/hCG per mg protein remained unchanged during the first 24h, but 48h after injection a 2-to 4-fold increase in both parameters was observed. By contrast, there was no change in basal adenylate cyclase activity or in the response of the enzyme to the stimulatory action of guanosine-5'-(beta gamma-imino) triphosphate (Gpp (NH)p), GTP, or NaF. Specific activity of succinate cytochrome c reductase, glucose-6-phosphatase and 5'-nucleotidase were found to be unaffected by the hormonal pretreatment, although total protein determined in these homogenates increased 3-fold in the course of this treatment. It is inferred that during follicular maturation, FSH enhances the responsiveness of ovarian adenylate cyclase to LH by stimulating the insertion of LH/hCG-receptors into the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号