首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.  相似文献   

2.
Epidermal growth factor (EGF) protects the intestinal epithelial tight junctions from acetaldehyde-induced insult. The role of phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) isoforms in the mechanism of EGF-mediated protection of tight junction from acetaldehyde was evaluated in Caco-2 cell monolayers. EGF-mediated prevention of acetaldehyde-induced decrease in transepithelial electrical resistance and an increase in inulin permeability, and subcellular redistribution of occludin and ZO-1 was attenuated by reduced expression of PLCgamma1 by short hairpin RNA. EGF induced a rapid activation of PLCgamma1 and PLC-dependent membrane translocation of PKCepsilon and PKCbetaI. Inhibition of PKC activity or selective interference of membrane translocation of PKCepsilon and PKCbetaI by RACK interference peptides attenuated EGF-mediated prevention of acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. BAPTA-AM and thapsigargin blocked EGF-induced membrane translocation of PKCbetaI and attenuated EGF-mediated prevention of acetaldehyde-induced disruption of tight junctions. EGF-induced translocation of PKCepsilon and PKCbetaI was associated with organization of F-actin near the perijunctional region. This study shows that PLCgamma-mediated activation of PKCepsilon and PKCbetaI and intracellular calcium is involved in EGF-mediated protection of tight junctions from acetaldehyde-induced insult.  相似文献   

3.
Protein kinases play an important role in the regulation of epithelial tight junctions. In the present study, we investigated the role of PKCζ (protein kinase Cζ) in tight junction regulation in Caco-2 and MDCK (Madin-Darby canine kidney) cell monolayers. Inhibition of PKCζ by a specific PKCζ pseudosubstrate peptide results in redistribution of occludin and ZO-1 (zona occludens 1) from the intercellular junctions and disruption of barrier function without affecting cell viability. Reduced expression of PKCζ by antisense oligonucleotide or shRNA (short hairpin RNA) also results in compromised tight junction integrity. Inhibition or knockdown of PKCζ delays calcium-induced assembly of tight junctions. Tight junction disruption by PKCζ pseudosubstrate is associated with the dephosphorylation of occludin and ZO-1 on serine and threonine residues. PKCζ directly binds to the C-terminal domain of occludin and phosphorylates it on threonine residues. Thr403, Thr404, Thr424 and Thr438 in the occludin C-terminal domain are the predominant sites of PKCζ-dependent phosphorylation. A T424A or T438A mutation in full-length occludin delays its assembly into the tight junctions. Inhibition of PKCζ also induces redistribution of occludin and ZO-1 from the tight junctions and dissociates these proteins from the detergent-insoluble fractions in mouse ileum. The present study demonstrates that PKCζ phosphorylates occludin on specific threonine residues and promotes assembly of epithelial tight junctions.  相似文献   

4.
The activity of Src kinases appears to play a role in both assembly and disassembly of tight junction. However, the role of a specific isoform of Src kinase in regulation of tight junction is not known. In the present study the role of c-Src in regulation of epithelial tight junction was investigated in Caco-2 cell monolayers. Oxidative stress (xanthine oxidase + xanthine) induced an activation and membrane translocation of c-Src. The oxidative stress-induced decrease in transepithelial electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 from the intercellular junctions were prevented by PP2. The rates of oxidative stress-induced activation of c-Src, tyrosine phosphorylation of ZO-1 and beta-catenin, decrease in resistance, increase in permeability to inulin, and redistribution of occludin and ZO-1 were significantly greater in cells transfected with wild type c-Src, whereas it was low in cells transfected with kinase-inactive c-SrcK297R mutant, when compared with those in empty vector-transfected cells. The rates of recovery of resistance, increase in barrier to inulin, and reorganization of occludin and ZO-1 into the intercellular junctions during the calcium-induced reassembly of tight junction were much greater in Caco-2 cells transfected with c-SrcK297R as compared with those in cells transfected with empty vector or wild type c-Src. These results show that the dominant-negative expression of kinase-inactive c-Src delays the oxidative stress-induced disruption of tight junction and accelerates calcium-induced assembly of tight junction in Caco-2 cells and demonstrate that oxidative stress-induced disruption of tight junction is mediated by the activation of c-Src.  相似文献   

5.
The role of mitogen-activated protein kinases (MAPK) in the mechanism of EGF-mediated prevention of acetaldehyde-induced tight junction disruption was evaluated in Caco-2 cell monolayers. Pretreatment of cell monolayers with EGF attenuated acetaldehyde-induced decrease in resistance and increase in inulin permeability and redistribution of occludin, zona occludens-1 (ZO-1), E-cadherin, and β-catenin from the intercellular junctions. EGF rapidly increased the levels of phospho-ERK1/2, phospho-p38 MAPK, and phospho-JNK1. Pretreatment of cell monolayers with U-0126 (inhibitor of ERK activation), but not SB-202190 and SP-600125 (p38 MAPK and JNK inhibitors), significantly attenuated EGF-mediated prevention of acetaldehyde-induced changes in resistance, inulin permeability, and redistribution of occludin and ZO-1. U-0126, but not SB-202190 and SP-600125, also attenuated EGF-mediated prevention of acetaldehyde effect on the midregion F-actin ring. However, EGF-mediated preservation of junctional distribution of E-cadherin and β-catenin was unaffected by all three inhibitors. Expression of wild-type or constitutively active MEK1 attenuated acetaldehyde-induced redistribution of occludin and ZO-1, whereas dominant-negative MEK1 prevented EGF-mediated preservation of occludin and ZO-1 in acetaldehyde-treated cells. MEK1 expression did not alter E-cadherin distribution in acetaldehyde-treated cells in the presence or absence of EGF. Furthermore, EGF attenuated acetaldehyde-induced tyrosine-phosphorylation of occludin, ZO-1, claudin-3, and E-cadherin. U-0126, but not SB-202190 and SP-600125, prevented EGF effect on tyrosine-phosphorylation of occludin and ZO-1, but not claudin-3, E-cadherin, or β-catenin. These results indicate that EGF-mediated protection of tight junctions from acetaldehyde requires the activity of ERK1/2, but not p38 MAPK or JNK1/2, and that EGF-mediated protection of adherens junctions is independent of MAPK activities.  相似文献   

6.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.  相似文献   

7.
ERK (extracellular-signal-regulated kinase) activation leads to disruption of tight junctions in some epithelial monolayers, whereas it prevents disruption of tight junctions in other epithelia. The factors responsible for such contrasting influences of ERK on tight junction integrity are unknown. The present study investigated the effect of the state of cell differentiation on ERK-mediated regulation of tight junctions in Caco-2 cell monolayers. EGF (epidermal growth factor) potentiated H2O2-induced tight junction disruption in under-differentiated cell monolayers, which was attenuated by the MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitor U0126. In contrast, EGF prevented H2O2-induced disruption of tight junctions in differentiated cell monolayers, which was also attenuated by U0126. Knockdown of ERK1/2 enhanced tight junction integrity and accelerated assembly of tight junctions in under-differentiated cell monolayers, whereas it had the opposite effect in differentiated cell monolayers. Regulated expression of wild-type and constitutively active MEK1 disrupted tight junctions, and the expression of dominant-negative MEK1 enhanced tight junction integrity in under-differentiated cells, whereas contrasting responses were recorded in differentiated cells. EGF prevented both H2O2-induced association of PP2A (protein phosphatase 2A), and loss of association of PKCζ (protein kinase Cζ), with occludin by an ERK-dependent mechanism in differentiated cell monolayers, but not in under-differentiated cell monolayers. Active ERK was distributed in the intracellular compartment in under-differentiated cell monolayers, whereas it was localized mainly in the perijunctional region in differentiated cell monolayers. Thus ERK may exhibit its contrasting influences on tight junction integrity in under-differentiated and differentiated epithelial cells by virtue of differences in its subcellular distribution and ability to regulate the association of PKCζ and PP2A with tight junction proteins.  相似文献   

8.
Liu H  Li M  Wang P  Wang F 《Cytokine》2011,56(3):581-588
Proinflammatory cytokines play vital roles in intestinal barrier function disruption. YC-1 has been reported to have potent anti-inflammatory properties, and to be a potential agent for sepsis treatment. Here, we investigated the protective effect of YC-1 against intestinal barrier dysfunction caused by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). To assess the protective effect of YC-1 on intestinal barrier function, Caco-2 monolayers treated with simultaneous IFN-γ and TNF-α were used to measure transepithelial electrical resistance (TER) and paracellular permeability. To determine the mechanisms involved in the protective action of YC-1, expression and distribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers challenged with simultaneous IFN-γ and TNF-α were analyzed by Western blot and immunofluorescence, respectively. Expressions of phosphorylated myosin light chain (MLC), MLC kinase (MLCK) and hypoxia-inducible factor-1α (HIF-1α) were analyzed by Western blot in IFN-γ and TNF-α-treated Caco-2 monolayers. It was found that YC-1 attenuated barrier dysfunction caused by IFN-γ and TNF-α, and also prevented IFN-γ and TNF-α-induced morphological redistribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers. In addition, YC-1 suppressed IFN-γ and TNF-α-induced upregulation of MLC phosphorylation and MLCK protein expression. Furthermore, enhanced expression of HIF-1α in Caco-2 monolayers treated with IFN-γ and TNF-α was also suppressed by YC-1. It is suggested that YC-1, by downregulating MLCK expression, attenuates intestinal barrier dysfunction induced by IFN-γ and TNF-α, in which HIF-1α inhibition, at least in part, might by involved. YC-1 may be a potential agent for treatment of intestinal barrier disruption in inflammation.  相似文献   

9.
Interleukin (IL)-15 is able to regulate tight junction formation in intestinal epithelial cells. However, the mechanisms that regulate the intestinal barrier function in response to IL-15 and the involved subunits of the IL-15 ligand-receptor system are unknown. We determined the IL-2Rbeta subunit and IL-15-dependent regulation of tight junction-associated proteins in the human intestinal epithelial cell line T-84. The IL-2Rbeta subunit was expressed and induced signal transduction in caveolin enriched rafts in intestinal epithelial cells. IL-15-mediated tightening of intestinal epithelial monolayers correlated with the enhanced recruitment of tight junction proteins into Triton X-100-insoluble protein fractions. IL-15-mediated up-regulation of ZO-1 and ZO-2 expression was independent of the IL-2Rbeta subunit, whereas the phosphorylation of occludin and enhanced membrane association of claudin-1 and claudin-2 by IL-15 required the presence of the IL-2Rbeta subunit. Recruitment of claudins and hyperphosphorylated occludin into tight junctions resulted in a more marked induction of tight junction formation in intestinal epithelial cells than the up-regulation of ZO-1 and ZO-2 by itself. The regulation of the intestinal epithelial barrier function by IL-15 involves IL-2Rbeta-dependent and -independent signaling pathways leading to the recruitment of claudins, hyperphosphorylated occludin, ZO-1, and ZO-2 into the tight junctional protein complex.  相似文献   

10.
Tight junctions create a paracellular permeability barrier that is breached when nonsteroidal anti-inflammatory drugs cause gastrointestinal injury, including increased gastrointestinal permeability. However, the mechanism by which aspirin affects the function of gastric epithelial tight junctions is unknown. Thus, we examined the effect of aspirin on gastric mucosal barrier properties and tight junction organization using MKN28, a human gastric epithelial cell line that expresses claudin-3, claudin-4, claudin-7, zonula occludens (ZO)-1, and occludin, but not claudin-2 or claudin-5, as determined by immunoblot analysis and immunofluorescent staining. Aspirin (5 mM) treatment of MKN28 gastric epithelial monolayers significantly decreased transepithelial electrical resistance and increased dextran permeability. Both aspirin-mediated permeability and phosphorylation of p38 MAPK were significantly attenuated by SB-203580 (a p38 MAPK inhibitor) but not by U-0126 (a MEK1 inhibitor) or SP-600125 (a JNK inhibitor). Aspirin significantly decreased the quantity of claudin-7 protein produced by MKN28 cells but not the quantity of claudin-3, claudin-4, ZO-1, or occludin. The aspirin-induced decrease in claudin-7 protein was completely abolished by SB-203580 pretreatment. These results demonstrate, for the first time, that claudin-7 protein is important in aspirin-induced gastric barrier loss and that p38 MAPK activity mediates this epithelial barrier dysfunction. tight junction; p38 mitogen-activated protein kinase; permeability  相似文献   

11.
Salmonella enterica serovar Typhimurium is a major cause of human gastroenteritis. Infection of epithelial monolayers by S. Typhimurium disrupts tight junctions that normally maintain the intestinal barrier and regulate cell polarity. Tight junction disruption is dependent upon the Salmonella pathogenicity island-1 (SPI-1) type 3 secretion system but the specific effectors involved have not been identified. In this study we demonstrate that SopB, SopE, SopE2 and SipA are the SPI-1-secreted effectors responsible for disruption of tight junction structure and function. Tight junction disruption by S. Typhimurium was prevented by inhibiting host protein geranylgeranylation but was not dependent on host protein synthesis or secretion of host-derived products. Unlike wild-type S. Typhimurium, DeltasopB, DeltasopE/E2, DeltasipA, or DeltasipA/sopB mutants, DeltasopB/E/E2 and DeltasipA/sopE/E2 mutants were unable to increase the permeability of polarized epithelial monolayers, did not disrupt the distribution or levels of ZO-1 and occludin, and did not alter cell polarity. These data suggest that SPI-1-secreted effectors utilize their ability to stimulate Rho family GTPases to disrupt tight junction structure and function.  相似文献   

12.
Oxidants such as monochloramine (NH(2)Cl) decrease epithelial barrier function by disrupting perijunctional actin and possibly affecting the distribution of tight junctional proteins. These effects can, in theory, disturb cell polarization and affect critical membrane proteins by compromising molecular fence function of the tight junctions. To examine these possibilities, we investigated the actions of NH(2)Cl on the distribution, function, and integrity of barrier-associated membrane, cytoskeletal, and adaptor proteins in human colonic Caco-2 epithelial monolayers. NH(2)Cl causes a time-dependent decrease in both detergent-insoluble and -soluble zonula occludens (ZO)-1 abundance, more rapidly in the former. Decreases in occludin levels in the detergent-insoluble fraction were observed soon after the fall of ZO-1 levels. The actin depolymerizer cytochalasin D resulted in a decreased transepithelial resistance (TER) more quickly than NH(2)Cl but caused a more modest and slower reduction in ZO-1 levels and in occludin redistribution. No changes in the cellular distribution of claudin-1, claudin-5, or ZO-2 were observed after NH(2)Cl. However, in subsequent studies, the immunofluorescent cellular staining pattern of all these proteins was altered by NH(2)Cl. The actin-stabilizing agent phalloidin did not prevent NH(2)Cl-induced decreases in TER or increases of apical to basolateral flux of the paracellular permeability marker mannitol. However, it partially blocked changes in ZO-1 and occludin distribution. Tight junctional fence function was also compromised by NH(2)Cl, observed as a redistribution of the alpha-subunit of basolateral Na(+)-K(+)-ATPase to the apical membrane, an effect not found with the apical membrane protein Na(+)/H(+) exchanger isoform 3. In conclusion, oxidants not only disrupt perijunctional actin but also cause redistribution of tight junctional proteins, resulting in compromised intestinal epithelial barrier and fence function. These effects are likely to contribute to the development of malabsorption and dysfunction associated with mucosal inflammation of the digestive tract.  相似文献   

13.
Chitosan is a polycationic compound widely employed as dietary supplement and also present in pharmaceutical preparations. Although it has been approved for human consumption, its possible side effects have not been widely investigated and the available data in the literature are still controversial. Several polycationic substances have been shown to affect tight junction permeability in epithelial cell models in vitro. In this study we have compared the effects of chitosan and other polycations (polyethylenimine, poly-L-lysines of different molecular weights) on the integrity of tight junctions and of the actin cytoskeleton in the human intestinal Caco-2 cell line. We have measured trans-epithelial electrical resistance and paracellular passage of the extracellular marker inulin, and we have localized F-actin and tight junctional proteins (ZO1 and occludin) in cell monolayers treated with various concentrations of each polycation. Fluorescent poly-L-lysines were also employed to determine their association with the cell monolayer. Our results indicate that all polycations investigated are able to induce a reversible increase in tight junction permeability. This effect is concentration and energy dependent, affected by the extracellular concentration of divalent cations (calcium, magnesium and manganese) and it is associated with morphological changes in the F-actin cytoskeleton, as well as in the localization of tight junctional proteins. Chitosan, in particular, was the only cationic polymer that displayed an irreversible effect on tight junctions at the highest concentration tested (0.01%). These results indicate that oral ingestion of chitosan may have more widespread health effects by altering intestinal barrier function, thus allowing the entrance into the circulation of potentially toxic and/or allergenic substances.  相似文献   

14.
Apparently conflicting observations indicated that protein kinase C both may block and support the assembly of tight junctions. We therefore tested the hypothesis that different isoenzymes antagonistically affect tight junction proteins and function. Thus, by using specific inhibitors we investigated the involvement of conventional and novel protein kinase C of kidney tubule cells in tight junction assembly. In low Ca2+ medium, the application of pan-protein kinase C inhibitor GF-109203X blocked the formation of tight junctions induced by protein kinase C agonist diacyglycerol. G?6976, inhibitor of conventional protein kinase C, promoted the formation of tight junctions and occludin phosphorylation in cells cultivated in low Ca2+ medium and attenuated the disruption of tight junction complex induced by the switch to low Ca2+ medium. In addition, G?6976 accelerated the occludin phosphorylation and the formation of tight junction barrier during assembly of tight junctions induced by Ca2+ re-addition. This phosphorylation was accompanied by accelerated occludin incorporation into newly forming tight junctions and by reducing the paracellular permeability. In contrast, inhibitor of novel protein kinase C rottlerin blocked the occludin phosphorylation and the formation of tight junction barrier, both caused by re-addition of normal Ca2+ medium. It is concluded that the conventional protein kinase C alpha participates in tight junction disassembly while the novel protein kinase C epsilon plays a role in tight junction formation of kidney epithelial cells. The discovered antagonism contributes to a better understanding of the regulation of the structure and function of tight junctions and hence to that of the epithelial barrier.  相似文献   

15.
In cell culture, both endothelial and epithelial cell monolayers have been found to generate structurally similar tight junctional complexes, as assessed by thin complexes of the two cell types are, at least in part, responsible for the very different permeability characteristics of native endothelial and epithelial cell monolayers. The purpose of this work was to compare cultured endothelial and epithelial cells with respect to the function of their tight junctional complexes in regulating the movement of macromolecules and ions across the cell monolayers, and define functional parameters to characterize the tight junctional complexes. Bovine aorta endothelial cells and T84 colonic carcinoma epithelial cells were cultured on a microporous membrane support. The permeability coefficients of inulin, albumin, and insulin were determined with the cell monolayers and compared with the permeability coefficients obtained with 3T3-C2 fibroblasts, a cell line that does not generate tight junctions. Electrical resistance measurements across the monolayer-filter systems were also compared. The permeability coefficient of albumin across the endothelial cell monolayer compared favorably with other reported values. Likewise, the electrical resistance across the T84 cell monolayer was in good agreement with published values. Utilizing permeability coefficients for macromolecules as an index of tight junction function, we found that a distinction between a lack of tight junctions (fibroblasts), the presence of endothelial tight junctions, and the presence of epithelial tight junctions was readily made. However, when utilizing electrical resistance as an index of tight junction function, identical measurements were obtained with fibroblasts and endothelial cells. This indicates that more than one index of tight junction function is necessary to characterize the junctional complexes. Although structurally similar, epithelial cell and endothelial cell tight junctions perform very different functions, and, from our data, we conclude that the demonstration of tight junctional structures by electron microscopy is not relevant to the functional nature of the junction: structure does not imply function. A minimal assessment of tight junction function should rely on both the determination of the electrical resistance across the cell monolayer, and the determination of the permeability coefficients of selected macromolecules.  相似文献   

16.
17.
Role of L-glutamine in the protection of intestinal epithelium from acetaldehyde-induced disruption of barrier function was evaluated in Caco-2 cell monolayer. L-Glutamine reduced the acetaldehyde-induced decrease in transepithelilal electrical resistance and increase in permeability to inulin and lipopolysaccharide in a time- and dose-dependent manner; d-glutamine, L-aspargine, L-arginine, L-lysine, or L-alanine produced no significant protection. The glutaminase inhibitor 6-diazo-5-oxo-L-norleucine failed to affect the L-glutamine-mediated protection of barrier function. L-Glutamine reduced the acetaldehyde-induced redistribution of occludin, zonula occludens-1 (ZO-1), E-cadherin, and beta-catenin from the intercellular junctions. Acetaldehyde dissociates occludin, ZO-1, E-cadherin, and beta-catenin from the actin cytoskeleton, and this effect was reduced by L-glutamine. L-Glutamine induced a rapid increase in the tyrosine phosphorylation of EGF receptor, and the protective effect of L-glutamine was prevented by AG1478, the EGF-receptor tyrosine kinase inhibitor. These results indicate that L-glutamine prevents acetaldehyde-induced disruption of the tight junction and increase in the paracellular permeability in Caco-2 cell monolayer by an EGF receptor-dependent mechanism.  相似文献   

18.
The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells.  相似文献   

19.
Disruption of epithelial barrier function was identified as one of the pathologic mechanisms in inflammatory bowel diseases (IBD). Epithelial barrier consists of various intercellular junctions, in which the tight junction (TJ) is an important component. However, the regulatory mechanism of tight junction is still not clear. Here we examined the role of focal adhesion kinase (FAK) in the epithelial barrier function on Caco-2 monolayers using a specific FAK inhibitor, PF-573, 228 (PF-228). We found that the decrease of transepithelial resistance and the increase of paracellular permeability were accompanied with the inhibition of autophosphorylation of FAK by PF-228 treatment. In addition, PF-228 inhibited the FAK phosphorylation at Y576/577 on activation loop by Src, suggesting Src-dependent regulation of FAK in Caco-2 monolayers. In an ethanol-induced barrier injury model, PF-228 treatment also inhibited the recovery of transepithelial resistance as well as these phosphorylations of FAK. In a sucrose gradient ultracentrifugation, FAK co-localized with claudin-1, an element of the TJ complex, and they co-migrate after ethanol-induced barrier injury. Immunofluorescence imaging analysis revealed that PF-228 inhibited the FAK redistribution to the cell border and reassembly of TJ proteins in the recovery after ethanol-induced barrier injury. Finally, knockdown of FAK by siRNA resulted in the decrease of transepithelial resistance. These findings reveal that activation of FAK is necessary for maintaining and repairing epithelial barrier in Caco-2 cell monolayer via regulating TJ redistribution.  相似文献   

20.
Rotaviruses infect epithelial cells of the small intestine, but the pathophysiology of the resulting severe diarrhea is incompletely understood. Histological damage to intestinal epithelium is not a consistent feature, and in vitro studies showed that intestinal cells did not undergo rapid death and lysis during viral replication. We show that rotavirus infection of Caco-2 cells caused disruption of tight junctions and loss of transepithelial resistance (TER) in the absence of cell death. TER declined from 300 to 22 Omega. cm(2) between 8 and 24 h after infection and was accompanied by increased transepithelial permeability to macromolecules of 478 and 4,000 Da. Distribution of tight junction proteins claudin-1, occludin, and ZO-1 was significantly altered during infection. Claudin-1 redistribution was notably apparent at the onset of the decline in TER. Infection was associated with increased production of lactate, decreased mitochondrial oxygen consumption, and reduced cellular ATP (60% of control at 24 h after infection), conditions known to reduce the integrity of epithelial tight junctions. In conclusion, these data show that rotavirus infection of Caco-2 intestinal cells altered tight junction structure and function, which may be a response to metabolic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号