首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Pathological changes in glomerular structure are typically associated with the progression of diabetic nephropathy. The involvement of angiotensin II (AII) in pathogenesis of diabetic nephropathy has been extensively studied and the therapeutic advantages associated with blockade of renin-angiotensin system (RAS), primarily with angiotensin converting enzyme (ACE) inhibitors, has been well-documented. We studied the effect of RAS blockade with an AII receptor antagonist (losartan) vs. an ACE inhibitor (enalapril) on glomerular lesions in KKAy mice, a model of type 2 diabetes mellitus. Losartan was administered at 3 and 10 mg/kg/day and enalapril at 3 mg/kg/day for 14 weeks in the drinking water. The doses of losartan at 10 mg/kg/day was expected to be equivalent to 3 mg/kg/day of enalapril when considering clinical doses for lowering blood pressure. The dose of 3 mg/kg/day of losartan was selected to compare the efficacy at equivalent dose of enalapril. Histologic observation demonstrated suppression of glomerular mesangial expansion and glomerulosclerosis with exudative lesion in the 10 mg/kg/day losartan group when compared to the untreated diabetic controls. A lesser degree of glomerulosclerosis was also observed with losartan and enalapril treatment at 3 mg/kg/day. Ultrastructural examination of renal glomeruli from the high dose losartan group revealed a decreased degree of effacement and/or irregular arrangement of glomerular podocytic foot process. The beneficial effect of RAS inhibition with the AII receptor antagonist losartan on diabetic glomerular lesions was clearly demonstrated in this study. These findings, therefore, provide mechanistic explanation for the clinical utility of losartan for use in the treatment of diabetic nephropathy in man.  相似文献   

2.
Arachidonate metabolites and the control of glomerular function   总被引:6,自引:0,他引:6  
The glomerulus is a dynamic structure capable of regulating the glomerular filtration rate (GFR) by mesangial contraction, thereby decreasing Kf. The mesangium contracts in response to angiotensin II (AII) and arginine vasopressin (AVP), both of which are potent stimuli of vasodilatory prostaglandin (PG) production. We studied interactions among these opposing factors in glomeruli. Normal rat glomeruli synthesized PGF2 alpha greater than PGE2 greater than 6-keto-PGF1 alpha = thromboxane (Tx) B2. Rat glomerular epithelial and mesangial cells, although capable of producing these four cyclooxy-genase end products, responded to AVP and AII stimulation with a preferential increase of PGE2, which suggests an intraglomerular feedback system between constrictor and dilator factors. Whole glomeruli, when incubated in AII, decreased in size, with a maximum decrement of surface area at 10(-10) M AII. In these glomerular contraction studies, preincubation with either arachidonate or PGE2 decreased the contractile response to AII, whereas PG inhibition enhanced the glomerular contractile response. Stable endoperoxide analogs also contracted glomeruli. In the acute phase of nephrotoxic serum nephritis (NSN) there were marked increments in glomerular production of TxA2, which correlated temporally with decrements of GFR and filtration fraction. Inhibition of TxA2 synthesis normalized GFR and filtration fraction 1-3 h after induction of NSN. These studies suggest not only an important physiological feedback role of vasodilatory PGs, as modulators of AII-induced glomerular contraction, but also a direct mesangial contractile effect of the arachidonate metabolite TxA2.  相似文献   

3.
The effects of intravenous infusions of arginine vasopressin (AVP) alone and with angiotensin II (AII) on renal function were studied in conscious Merino ewes. AVP at 11.5 pmol.min-1 caused an increase in water and electrolyte output which was associated with a rise in glomerular filtration rate (GFR), solute clearance, solute-free water reabsorption and tubular sodium reabsorption. Addition of AII of 100 ng.min-1 generally reversed all of these effects. The filtration fraction, which rose during AVP infusion, increased further when AII was added due to a greater fall in renal plasma flow than in GFR. The diuretic and electrolyte-excreting effects of infused AVP appeared to be brought about by an increase in GFR. It is suggested that this inappropriate effect of AVP, which is secreted in response to water deprivation, could be countered by the simultaneous production of AII.  相似文献   

4.
W Kloas  W Hanke 《Peptides》1992,13(2):349-354
Angiotensin II (AII) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. AII binding was present in kidney glomeruli and in interrenal tissue of the outer zone of the adrenal gland. Saturation experiments showed that [125I]-[Val5]AII binds to a single class of binding sites with a dissociation constant (Kd) of 548 +/- 125 pM in glomeruli and 593 +/- 185 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 2.48 +/- 0.71 and 3.05 +/- 1.02 fmol/mm2, respectively. AII binding was displaced by unlabeled angiotensin analogues in the rank order: [Sar1]AII greater than human AII greater than [125I]-[Val5]AII = [Val5]AII = human AIII much greater than human AI. The AII binding sites in glomeruli and interrenal tissue suggest an influence of AII on glomerular filtration rate and adrenal steroid secretion to take part in osmomineral regulation of the frog.  相似文献   

5.
Vasoactive peptides are implied in the development of renal sclerosis as evidenced by the efficiency of their antagonists in preventing glomerulosclerosis of experimental and human nephropathies. Genetically engineered models provide a new approach to investigate the mechanisms of the renal profibrotic actions of angiotensin II and endothelin. Overexpression of the human angiotensinogen and renin genes in rats induces renal sclerosis independently of changes in systemic hemodynamics. The same results are observed when the endothelin-1 gene is overexpressed in mice. Transgenic mice harboring the luciferase gene under the control of the collagen I-alpha 2 chain promoter (procol alpha 2[1]) and made hypertensive by induction of nitric oxide (NO) deficiency were used to study the renal profibrotic actions of vasoactive peptides. In this strain of mice, luciferase activity is an early index of renal fibrosis. Luciferase activity was increased in preglomerular arterioles and glomeruli when mice were deficient in NO. The pharmacological blockade of angiotensin II and endothelin prevented the development of renal sclerosis without modifying blood pressure. Moreover, when the endothelin receptor antagonist was administered after the development of renal fibrosis, preformed glomerulosclerosis partially regressed. Acute administration of vasoactive peptides and TGF-beta in transgenic procol alpha 2[1] mice showed that the angiotensin II activation of collagen I gene requires participation and/or cooperation of endothelin and TGF-beta. Recent data suggest that the profibrotic actions of vasoactive peptides also need the activation of EGF receptor, ERK and rho kinase pathways in renal and vascular cells.  相似文献   

6.
Summary Slices from the kidneys of the rainbow trout which were exposed to 10-6 or 10-5 M angiotensin II (AII) and isolated glomeruli exposed to 10-7 or 10-5 M AII showed ultrastructural changes compared to control tissues incubated without AII. The studies indicate that angiotensin II has a direct action on glomerular ultrastructure, flattening the epithelial podocytes and broadening the primary processes with fusion of pedicels in extreme cases. These changes suggest a probable effect of AII on water permeability of the trout glomerulus, an intrarenal action which is believed to form an essential part of the antidiuretic adaptation to increased environmental salinities.  相似文献   

7.
8.
BACKGROUND: Diabetic nephropathy is a leading cause of end-stage renal disease in industrialized countries. Previous studies have documented that angiotensin converting enzyme (ACE) inhibitors consistently reduce albuminuria and retard the progression of diabetic nephropathy. However, the involvement of angiotensin II in diabetic nephropathy is not fully understood. MATERIALS AND METHODS: In this study we compared the effects of CS-866, a new angiotensin II type 1 receptor antagonist, to that of an ACE inhibitor, temocapril hydrochloride, on the development and progression of diabetic nephropathy using Otsuka Long-Evans Tokushima fatty rats, a type II diabetes mellitus model animal. RESULTS: High doses of CS-866 or temocapril treatment were found to significantly improve urinary protein and beta(2)-microglobulin excretions in diabetic rats. In electron microscopic analysis, loss of glomerular anionic sites, one of the causes of glomerular hyperpermeability in diabetic nephropathy, was found to be significantly prevented by CS-866 treatment. Light microscopic examinations revealed that both treatments ameliorated glomerular sclerosis and tubulointerstitial injury in diabetic rats. Furthermore, high doses of CS-866 or temocapril treatment significantly reduced the positive stainings for transforming growth factor-beta (TGF-beta), vascular endothelial growth factor, and type IV collagen in glomeruli of diabetic rats. CONCLUSIONS: These results indicate that intrarenal angiotensin II type 1 receptor activation plays a dominant role in the development and progression of diabetic nephropathy. Our study suggests that CS-866 represents a valuable new drug for the treatment of diabetic patients with nephropathy.  相似文献   

9.
Membrane-bound peptidases are critical regulators of peptide hormones. We therefore characterized aminopeptidase A (APA) activity in human glomerular epithelial cells (HGEC) and studied the control of its expression. APA, which splits off the N-terminal Asp from angiotensin II (AII), was present at the surface of HGECs (55% of the total enzyme). APA activity was calcium-dependent and was inhibited by amastatin. Treatment of HGECs by dexamethasone (DEX) increased ecto-APA activity in a dose- and time-dependent manner. Maximal increase of APA activity (x 2) occurred after treatment with 0.5 microM DEX for 5 days. HIgher concentrations (1-10 microM) of aldosterone (ALD) stimulated APA activity to a lesser extent (x 1.25). Actinomycin D and cycloheximide prevented and RU 38486, a glucocorticoid receptor antagonist, suppressed the DEX-induced increase in APA activity. These results indicate that AII availability at glomerular receptor sites may be reduced by DEX and suggest a role for glucocorticoids in AII-dependent changes of glomerular filtration rate.  相似文献   

10.
Maturation of the glomerular basement membrane (GBM) is essential for maintaining the integrity of the renal filtration barrier. Impaired maturation causes proteinuria and renal fibrosis in the type IV collagen disease Alport syndrome. This study evaluates the role of collagen receptors in maturation of the GBM, matrix accumulation and renal fibrosis by using mice deficient for discoidin domain receptor 1 (DDR1), integrin subunit α2 (ITGA2), and type IV collagen α3 (COL4A3). Loss of both collagen receptors DDR1 and integrin α2β1 delays maturation of the GBM: due to a porous GBM filtration barrier high molecular weight proteinuria that more than doubles between day 60 and day 100. Thereafter, maturation of the GBM causes proteinuria to drop down to one tenth until day 200. Proteinuria and the porous GBM cause accumulation of glomerular and tubulointerstitial matrix, which both decrease significantly after GBM-maturation until day 250. In parallel, in a disease with impaired GBM-maturation such as Alport syndrome, loss of integrin α2β1 positively delays renal fibrosis: COL4A3−/−/ITGA2−/ double knockouts exhibited reduced proteinuria and urea nitrogen compared to COL4A3−/−/ITGA2+/− and COL4A3−/−/ITGA2+/+ mice. The double knockouts lived 20% longer and showed less glomerular and tubulointerstitial extracellular matrix deposition than the COL4A3−/− Alport mice with normal integrin α2β1 expression. Electron microscopy illustrated improvements in the glomerular basement membrane structure. MMP2, MMP9, MMP12 and TIMP1 were expressed at significantly higher levels (compared to wild-type mice) in COL4A3−/−/ITGA2+/+ Alport mice, but not in COL4A3+/+/ITGA2−/− mice. In conclusion, the collagen receptors DDR1 and integrin α2β1 contribute to regulate GBM-maturation and to control matrix accumulation. As demonstrated in the type IV collagen disease Alport syndrome, glomerular cell–matrix interactions via collagen receptors play an important role in the progression of renal fibrosis.  相似文献   

11.
In vivo actions of angiotensin II on glomerular function   总被引:2,自引:0,他引:2  
Investigations in which a variety of experimental approaches were used, i.e., micropuncture techniques, analysis of intrarenal hormonal receptor, and electron microscopic analysis of renal morphology, have substantiated a major role for angiotensin II (AII) within the kidney in the regulation of vascular resistances, glomerular function, and even tubular reabsorption. It is also clear that AII exerts a significant influence on glomerular hemodynamics in a variety of altered physiological and pathophysiological states. Recent studies suggest a rather complex interaction between AII and hormonal and adrenergic effects at the glomerular level. AII may also play an important functional role in the pathogenesis of certain forms of acute renal failure. The specific mechanism whereby AII decreases the glomerular ultrafiltration coefficient, however, remains to be fully elucidated. Although in vitro and in vivo studies have suggested that the glomerular effects of AII may be associated with contraction of glomerular mesangial cells, recent in vivo quantitative evaluation has suggested that a uniform vasoconstriction of glomerular capillaries with proportional reductions in glomerular surface area is probably not the sole mechanism for the AII-induced reductions in glomerular ultrafiltration coefficient.  相似文献   

12.
The kidney's glomerular filtration barrier consists of two cells-podocytes and endothelial cells-and the glomerular basement membrane (GBM), a specialized extracellular matrix that lies between them. Like all basement membranes, the GBM consists mainly of laminin, type IV collagen, nidogen, and heparan sulfate proteoglycan. However, the GBM is unusually thick and contains particular members of these general protein families, including laminin-521, collagen α3α4α5(IV), and agrin. Knockout studies in mice and genetic findings in humans show that the laminin and type IV collagen components are particularly important for GBM structure and function, as laminin or collagen IV gene mutations cause filtration defects and renal disease of varying severities, depending on the nature of the mutations. These studies suggest that the GBM plays a crucial role in establishing and maintaining the glomerular filtration barrier.  相似文献   

13.
Angiotensins are produced by granuloma macrophages in murine Schistosoma mansoni. During the course of infection, granuloma undergo a T-cell-dependent process called modulation in which their maximal size decreases. This study was undertaken to establish whether angiotensin production by granuloma macrophages is altered by immunoregulatory lymphocytes. Granuloma macrophages from modulated lesions released and contained more angiotensin II/III (AII/III) and less angiotensin I (AI) than those from the acute infection. Captopril, a specific angiotensin-converting-enzyme (ACE) inhibitor, appreciably decreased AII/III produced by macrophages from modulated granulomas. Adoptive transfer of splenic T lymphocytes from chronically infected donors into acutely infected recipients altered angiotensin production by the granuloma macrophages in a manner similar to that seen in modulated lesions. However, no difference was detected in the capacity of granuloma macrophages from acutely or chronically infected mice to metabolize 125I-AI or -AII added to cell cultures. Similarly, captopril did not alter the metabolism of exogenously administrated angiotensins. These findings suggest that regulatory T lymphocytes influence the metabolism by granuloma macrophages of endogenously produced angiotensins at least in part by induction of macrophage ACE activity. However, the degradation of extracellular AI and AII may result from the activity of enzymes other than ACE which are not inducible by modulation.  相似文献   

14.
Angiotensin II receptor regulation in isolated renal glomeruli   总被引:6,自引:0,他引:6  
Equilibrium binding studies with angiotensin II (AII) in isolated rat renal glomeruli indicate the presence of a single population of high-affinity AII receptors. Autoradiographic studies localize these receptors to glomerular mesangial cells, which are ideally positioned to modulate glomerular capillary patency and hence the glomerular capillary ultrafiltration coefficient. Modulation of AII receptor density occurs in response to alterations of circulating AII levels, with down-regulation of receptor number in the presence of salt depletion. Kinetic studies of the ligand dissociation rate performed in the presence and absence of MgCl2 and GTP indicate multiple affinity states and suggest that this receptor is coupled to a guanyl nucleotide regulatory unit. Such coupling may provide a basis for interaction with cyclase-activating hormones in modulating the contractile state of the mesangium.  相似文献   

15.
In anterior pituitary cell aggregates cultured in the presence of the glucocorticoid dexamethasone (DEX) angiotensin II (AII) had a dual effect on growth hormone (GH) release. The peptide stimulated the release in aggregates from 2-week-old rats, whereas the peptide had an inhibitory effect in cultures from adult rats. Treatment of aggregates from adult rats with pertussis toxin (PT) reversed the inhibitory effect of AII on GH release in a stimulatory effect; PT treatment of aggregates from 18- to 20-day-old rats significantly enhanced the stimulation of GH release by AII. The effect of PT was seen only when DEX was added to the culture medium. The present data suggest that the glucocorticoid-dependent stimulus-effect coupling of AII on GH release involves both a stimulatory and an inhibitory component, the latter being abolished by PT, and that the stimulatory component predominates during immature life while the inhibitory one during adult life.  相似文献   

16.
Angiotensin II receptor binding sites in rat liver and PC12 cells differ in their affinities for a nonpeptidic antagonist, DuP 753, and p-aminophenylalanine6 angiotensin II. In liver, which primarily contains the sulfhydryl reducing agent-inhibited type of angiotensin II receptor, which we refer to as the AII alpha subtype, DuP 753 displays an IC50 of 55 nM, while p-aminophenylalanine6 angiotensin II displays an IC50 of 8-9 microM. In PC12 cells, which primarily contain the angiotensin II receptor type whose binding affinity is enhanced by sulfhydryl reducing agents (AII beta), DuP 753 displays an IC50 in excess of 100 microM, while p-aminophenylalanine6 angiotensin II displays an IC50 of 12 nM. p-Aminophenylalanine6 angiotensin II binding affinity in liver is decreased in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) suggesting that this analogue is an agonist.  相似文献   

17.
Advanced glomerulosclerosis, a common hallmark of chronic renal diseases (CRD) is believed to be irreversible, and it is thought that glomerular hyperfiltration and hypertrophy may participate in its pathogenesis. We demonstrate here that glomerulosclerosis is "reversible" in an animal model. We used nephrotic ICGN (nep/nep) mice which showed a rapid progression of glomerulosclerosis, accompanied by histological findings for glomerular hyperfiltration. It is known that ureter ligation reduces glomerular filtration in ligated kidneys. When ureter ligation was applied to our model, glomerulosclerosis (characterized by myofibroblast hyperplasia and over-accumulated matrix protein) weakened in conjunction with suppressed glomerular hypertrophy. During this process, glomerular myofibroblasts showed apoptotic cell death after unilateral ureter ligation (UUO) treatment. Our results suggest that inhibition of glomerular filtration in sclerotic tufts may cause glomerular remodeling through the modulation of molecular and cellular sclerogenesis.  相似文献   

18.
Specific blockers of the angiotensin type1 receptor, angiotensin receptor blockers (ARBs), have been introduced as an alternative to angiotensin-converting enzyme inhibitors (ACEi) for the treatment of heart failure. In comparison with ACEi, ARBs are better tolerated and have similar effects on haemodynamics, neurohormones and exercise capacity. Early studies have suggested that ARBs might have a superior effect on mortality. However, the first outcome trial, ELITE II (Losartan Heart Failure Survival Study), did not show any significant difference between losartan and captopril in terms of mortality or morbidity. This commentary outlines the role of ARBs in the treatment of heart failure.  相似文献   

19.
In renal artery stenosis severe enough to cause hypertension, angiotensin II maintains glomerular filtration rate (GFR) both in the initial high renin phase of hypertension and later when plasma levels are normal. Angiotensin II also maintains GFR in less severe stenosis, which does not cause hypertension. This homeostatic action of angiotensin II to maintain GFr has minimal effects on blood flow. In renal-wrap hypertension, plasma renin levels are elevated for longer than after renal artery stenosis, but in other respects this initial phase of the hypertension is similar to that after renal artery stenosis. GFR is reduced, the rate of development of hypertension is accelerated by angiotensin II, and angiotensin II maintains the glomerular filtration fraction. Renal resistance is markedly increased owing to both compression of the kidney by the hypertrophying renal capsule and to angiotensin II. Thus angiotensin II apparently plays a primarily homeostatic role in renovascular hypertension to maintain glomerular ultrafiltration. It is suggested that the angiotensin II may be formed intrarenally and may act on sites other than resistance blood vessels.  相似文献   

20.
Prior study shows that maternal protein-restricted (LP) 16-wk-old offspring have pronounced reduction of nephron number and arterial hypertension associated with unchanged glomerular filtration rate, besides enhanced glomerular area, which may be related to glomerular hyperfiltration/overflow and which accounts for the glomerular filtration barrier breakdown and early glomerulosclerosis. In the current study, LP rats showed heavy proteinuria associated with podocyte simplification and foot process effacement. TGF-β1 glomerular expression was significantly enhanced in LP. Isolated LP glomeruli show a reduced level of miR-200a, miR-141, miR-429 and ZEB2 mRNA and upregulated collagen 1α1/2 mRNA expression. By western blot analyzes of whole kidney tissue, we found significant reduction of both podocin and nephrin and enhanced expression of mesenchymal protein markers such as desmin, collagen type I and fibronectin. From our present knowledge, these are the first data showing renal miRNA modulation in the protein restriction model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced stage of fibrosis, which led us to state that the glomerular miR-200 family would be downregulated by TGF-β1 action inducing ZEB 2 expression that may subsequently cause glomeruli epithelial-to-mesenchymal transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号