首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) have been identified and characterized, and their in situ distribution in rabbit skeletal muscle has been determined using monoclonal antibodies. TS28, defined by mAb IXE112, was shown to have an apparent relative molecular mass of 28,000 D. Biochemical studies showed that TS28 is a minor membrane protein in isolated transverse tubular vesicles. Immunofluorescence and immunoelectron microscopical studies showed that TS28 is localized to the transverse tubules and in some subsarcolemmal vesicles possibly corresponding to the subgroup of caveolae connecting the transverse tubules with the sarcolemma. In contrast, TS28 is absent from the lateral portion of the sarcolemma. Immunofluorescence studies also showed that TS28 is more densely distributed in type II (fast) than in type I (slow) myofibers. Although TS28 and the 1,4-dihydropyridine receptor are both localized to transverse tubules and subsarcolemmal vesicles, TS28 is not a wheat germ agglutinin (WGA)-binding glycoprotein and does not appear to copurify with the 1,4-dihydropyridine receptor after detergent solubilization of transverse tubular membranes. SL50, defined by mAb IVD31, was shown to have an apparent relative molecular mass of 50,000 D. Biochemical studies showed that SL50 is not related to the 52,000-D (beta subunit) of the dihydropyridine receptor but does bind to WGA-Sepharose. Immunofluorescence labeling imaged by standard and confocal microscopy showed that SL50 is associated with the sarcolemma but apparently absent from the transverse tubules. Immunofluorescence labeling also showed that the density of SL50 in type II (fast) myofibers is indistinguishable from that of type I (slow) myofibers. The functions of TS28 and SL50 are presently unknown. However, the distinct distribution of TS28 to the transverse tubules and subsarcolemmal vesicles as determined by immunocytochemical labeling suggests that TS28 may be directly involved in excitation-contraction coupling. Our results demonstrate that, although transverse tubules are continuous with the sarcolemma, each of these membranes contain one or more unique proteins, thus supporting the idea that they each have a distinct protein composition.  相似文献   

2.
Our previous immunofluorescence studies support the conclusion that the temporal appearance and subcellular distribution of TS28 (a marker of transverse (T) tubules and caveolae in adult skeletal muscle [Jorgensen, A. O., W. Arnold, A. C.-Y. Shen. S. Yuan, M. Gover, and K. P. Campbell, 1990, J. Cell Biol. 110:1173-1185]), correspond very closely to those of T-tubules forming de novo in developing rabbit skeletal muscle (Yuan, S., W. Arnold, and A. O. Jorgensen, 1990, J. Cell Biol. 110:1187-1198). To extend our morphological studies of the biogenesis of T-tubules and triads, the temporal appearance and subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (a marker of the T-tubules and caveolae) was compared to (a) that of TS28; and (b) that of the ryanodine receptor (a marker of the junctional sarcoplasmic reticulum) in rabbit skeletal muscle cells developing in situ (day 19 of gestation to 10 d newborn) by double immunofluorescence labeling. The results presented show that the temporal appearance and relative subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (alpha 1-DHPR) are distinct from those of TS28 at the onset of the biogenesis of T-tubules. Thus, in a particular developing myotube the alpha 1-DHPR appeared before TS28 (secondary myotubes; day 19-24 of gestation). Furthermore, the alpha 1-DHPR was distributed in discrete foci at the outer zone of the cytosol, while TS28 was confined to foci and rod-like structures at the cell periphery. As development proceeded (primary myotubes; day 24 of gestation) approximately 50% of the foci were positively labeled for both TS28 and the alpha 1-DHPR, while approximately 20 and 30% of the foci were uniquely labeled for TS28 and the alpha 1-DHPR, respectively. The foci labeled for both TS28 and the alpha 1-DHPR and the foci uniquely labeled for TS28 were generally confined to the cell periphery, while the foci uniquely labeled for the alpha 1-DHPR were mostly confined to the outer zone of the cytosol. 1-2 d after birth, TS28 was distributed in a chickenwire-like network throughout the cytosol, while the alpha 1-DHPR was confined to cytosolic foci. In contrast, the temporal appearance and subcellular distribution of the alpha 1-DHPR and the ryanodine receptor were very similar, if not identical, throughout all the stages of the de novo biogenesis of T-tubules and triads examined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
mAbs specific for protein components of the surface membrane of rabbit skeletal muscle have been used as markers in the isolation and characterization of skeletal muscle sarcolemma membranes. Highly purified sarcolemma membranes from rabbit skeletal muscle were isolated from a crude surface membrane preparation by wheat germ agglutination. Immunoblot analysis of subcellular fractions from skeletal muscle revealed that dystrophin and its associated glycoproteins of 156 and 50 kD are greatly enriched in purified sarcolemma vesicles. The purified sarcolemma was also enriched in novel sarcolemma markers (SL45, SL/TS230) and Na+/K(+)-ATPase, whereas t-tubule markers (alpha 1 and alpha 2 subunits of dihydropyridine receptor, TS28) and sarcoplasmic reticulum markers (Ca2(+)-ATPase, ryanodine receptor) were greatly diminished in this preparation. Analysis of isolated sarcolemma by SDS-PAGE and densitometric scanning demonstrated that dystrophin made up 2% of the total protein in the rabbit sarcolemma preparation. Therefore, our results demonstrate that although dystrophin is a minor muscle protein it is a major constituent of the sarcolemma membrane in skeletal muscle. Thus the absence of dystrophin in Duchenne muscular dystrophy may result in a major disruption of the cytoskeletal network underlying the sarcolemma in dystrophic muscle.  相似文献   

4.
The ultrastructural differentiation of several different muscles was investigated in human fetuses ranging in age from 13 weeks to neonatal. At approximately 16 weeks of gestation cell cluster containing both myotubes and satellite cells lie enclosed by a newly formed basal lamina and show evidence of fusion. The development of organelles is evident in myoblasts, proceeds as the cells transform into myofibers, and continues in the neonate. Filament synthesis occurs primarily in the cell periphery where thin filaments appear to align themselves in relations to parallel arrays of ribosome-studded thick filaments: Z line formation follows the appearance of thin filaments. Intermediate filaments, approximately 10-12 nm thick, were also consistently observed in perinuclear regions and distal to filament assembly. Although sarcoplasmic reticulum (SR) development is closely related to fibril formation, connections between Z lines and SR are not consistent, thus supporting the conclusion that SR does not evoke the formation of the Z line. Bristlecoated vesicles appear to be the precursors of elements of the SR, possibly the lateral sacs. Development of the transverse tubules, as invaginations of the sarcolemma, is closely associated with the formation of lateral sacs since the latter occur along the sarcolemma as soon as transverse tubules appear. Cytological differentiation is similar, though not identical, in several different muscles. During the last trimester muscle fibers show some evidence of diversity mainly of variation in Z line width. In gerneral the results suggest that the sequence and stages of human myogenesis are similar to those of other species.  相似文献   

5.
6.
Biogenesis of transverse tubules in skeletal muscle in vitro   总被引:14,自引:0,他引:14  
The transverse (T) tubules of skeletal muscle are membrane tubules that are continuous with the plasma membrane and penetrate the mature muscle fiber radially to carry surface membrane depolarization to the sites of excitation-contraction coupling. We have studied the development of the T-tubule system in cultured amphibian and mammalian muscle cells using a fluorescent lipid probe and antibodies against T-tubules and plasma membranes. Both the lipid probe and the T-tubule antibody recognized an extensive tubular membrane system which subsequently differentiated into the T-system. At all developmental stages, the molecular composition of the T-system was distinct from that of the plasma membrane, suggesting that during myogenesis T-tubules and the plasma membrane form independently from each other and that exchange of membrane proteins between the two continuous compartments is restricted. In rat muscle cultures, T-tubule-specific antigens were first expressed in terminally differentiated myoblasts. Prior to myoblast fusion the antigens appeared as punctate label throughout the cytoplasm. Shortly after fusion the T-tubule-specific antibody labeled a tubular membrane system that extended from the perinuclear region and penetrated most parts of the cells. In contrast, the lipid probe, which labels the T-tubules by virtue of their direct continuity with the plasma membrane, only labeled short tubules extending from the plasma membrane into the periphery of the myotubes at the early stage in development. Thus, the assembly of the T-tubules appears to begin before their connections with the plasma membrane are established.  相似文献   

7.
Despite multiple procedures used to isolate transverse tubule vesicles from rabbit skeletal muscle, few proteins have been identified and shown to be specific to transverse tubule vesicles. Markers for purified transverse tubules have included high affinity dihydropyridine binding, cholesterol content, Mg2+-ATPase activity, (Na+,K+)-ATPase activity, and [3H] ouabain binding. Despite these markers, few proteins from purified transverse tubules can be unequivocally identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In this report we have biochemically and immunologically identified rabbit albumin as a major component of purified transverse tubule membranes from rabbit skeletal muscle. Albumin composed between 5.1 and 9.8% (n = 4) of the total protein in purified transverse tubules based on scans of SDS-PAGE. Furthermore, albumin and other serum proteins are present in preparations of transverse tubules and triads but not in light sarcoplasmic reticulum. Extraction of triads with low concentrations of saponin or sodium dodecyl sulfate completely removes albumin without removing intrinsic membrane proteins. Our results suggest that albumin and other serum proteins are present in the lumen of preparations of transverse tubules and albumin may be used as a marker for the transverse tubules when analyzed on SDS gels.  相似文献   

8.
We studied the development of transverse (T)-tubules and sarcoplasmic reticulum (SR) in relationship to myofibrillogenesis in normal and dysgenic (mdg/mdg) mouse skeletal muscle by immunofluorescent labeling of specific membrane and myofibrillar proteins. At E16 the development of the myofibrils and membranes in dysgenic and normal diaphragm was indistinguishable, including well developed myofibrils, a delicate network of T-tubules, and a prominent SR which was not yet cross-striated. In diaphragms of E18 dysgenic mice, both the number and size of muscle fibers and myofibrillar organization were deficient in comparison to normal diaphragms, as previously reported. T-tubule labeling was abnormal, showing only scattered tubules and fragments. However, many muscle fibers displayed cross striation of sarcomeric proteins and SR comparable to normal muscle. In cultured myotubes, cross-striated organization of sarcomeric proteins proceeded essentially in two stages: first around the Z-line and later in the A-band. Sarcomeric organization of the SR coincided with the first stage, while the appearance of T-tubules in the mature transverse orientation occurred infrequently, only after A-band maturation. In culture, myofibrillar and membrane organization was equivalent in normal and dysgenic muscle at the earlier stage of development, but half as many dysgenic myotubes reached the later stage as compared to normal. We conclude that the mdg mutation has little effect on the initial stage of membrane and myofibril development and that the deficiencies often seen at later stages result indirectly from the previously described absence of dihydropyridine receptor function in the mutant.  相似文献   

9.
Calcium channel blockers bind with high affinity to sites on the voltage-sensitive Ca2+ channel. Radioligand binding studies with various Ca2+ channel blockers have facilitated identification and characterization of binding sites on the channel structure. In the present study we evaluated the relationship between the binding sites for the Ca2+ channel blockers on the voltage-sensitive Ca2+ channel from rabbit heart sarcolemma and rabbit skeletal muscle transverse tubules. [3H]PN200-110 binds with high affinity to a single population of sites on the voltage-sensitive Ca2+ channel in both rabbit heart sarcolemma and skeletal muscle transverse tubules. [3H]PN200-110 binding was not affected by added Ca2+ whereas EGTA and EDTA noncompetitively inhibited binding in both types of membrane preparations. EDTA was a more potent inhibitor of [3H]PN200-110 binding than EGTA. Diltiazem stimulates the binding of [3H]PN200-110 in a temperature-sensitive manner. Verapamil inhibited binding of [3H]PN200-110 to both types of membrane preparations in a negative manner, although this effect was of a complex nature in skeletal muscle transverse tubules. The negative effect of verapamil on [3H]PN200-110 binding in cardiac muscle was completely reversed by Ca2+. On the other hand, Ca2+ was without effect on the negative cooperativity seen between verapamil and [3H]PN200-110 binding in skeletal muscle transverse tubules. Since Ca2+ did not affect [3H]PN200-110 binding to membranes, we would like to suggest that Ca2+ is modulating the negative effect of verapamil on [3H]PN200-110 binding through a distinct Ca2+ binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We studied the development of transverse (T)-tubules and sarcoplasmic reticulum (SR) in relationship to myofibrillogenesis in normal and dysgenic (mdg/mdg) mouse skeletal muscle by immunofluorescent labeling of specific membrane and myofibrillar proteins. At E16 the development of the myofibrils and membranes in dysgenic and normal diaphragm was indistinguishable, including well developed myofibrils, a delicate network of T-tubules, and a prominent SR which was not yet cross-striated. In diaphragms of E18 dysgenic mice, both the number and size of muscle fibers and myofibrillar organization were deficient in comparison to normal diaphragms, as previously reported. T-tubule labeling was abnormal, showing only scattered tubules and fragments. However, many muscle fibers displayed cross striation of sarcomeric proteins and SR comparable to normal muscle. In cultured myotubes, cross-striated organization of sarcomeric proteins proceeded essentially in two stages: first around the Z-line and later in the A-band. Sarcomeric organization of the SR coincided with the first stage, while the appearance of T-tubules in the mature transverse orientation occurred infrequently, only after A-band maturation. In culture, myofibrillar and membrane organization was equivalent in normal and dysgenic muscle at the earlier stage of development, but half as many dysgenic myotubes reached the later stage as compared to normal. We conclude that the mdg mutation has little effect on the initial stage of membrane and myofibril development and that the deficiencies often seen at later stages result indirectly from the previously described absence of dihydropyridine receptor function in the mutant.  相似文献   

11.
An improved immunogold labeling procedure was used to examine the subcellular distribution of glucose transporters in Lowricryl HM20- embedded skeletal muscle from transgenic mice overexpressing either Glut1 or Glut4. In basal muscle, Glut4 was highly enriched in membranes of the transverse tubules and the terminal cisternae of the triadic junctions. Less than 10% of total muscle Glut4 was present in the vicinity of the sarcolemmal membrane. Insulin treatment increased the number of gold particles associated with the transverse tubules and the sarcolemma by three-fold. However, insulin also increased the total Glut4 immunogold reactivity in muscle ultrathin sections by up to 1.8- fold and dramatically increased the amount of Glut4 in muscle sections as observed by laser confocal immunofluorescence microscopy. The average diameter of transverse tubules observed in longitudinal sections increased by 50% after insulin treatment. Glut1 was highly enriched in the sarcolemma, both in the basal state and after insulin treatment. Disruption of transverse tubule morphology by in vitro glycerol shock completely abolished insulin-stimulated glucose transport in isolated rat epitrochlearis muscles. These data indicate that: (a) Glut1 and Glut4 are targeted to distinct plasma membrane domains in skeletal muscle; (b) Glut1 contributes to basal transport at the sarcolemma and the bulk of insulin-stimulated transport is mediated by Glut4 localized in the transverse tubules; (c) insulin increases the apparent surface area of transverse tubules in skeletal muscle; and (d) insulin causes the unmasking of a COOH-terminal antigenic epitope in skeletal muscle in much the same fashion as it does in rat adipocytes.  相似文献   

12.
The distribution of glucose transporters and of insulin receptors on the surface membranes of skeletal muscle was studied, using isolated plasma membranes and transverse tubule preparations. (i) Plasma membranes from rabbit skeletal muscle were prepared according to Seiler and Fleischer (1982, J. Biol. Chem. 257, 13862-13871), and transverse tubules from rabbit skeletal muscle were prepared according to Rosemblatt et al. (1981, J. Biol. Chem. 256, 8140-8148) as modified by Hidalgo et al. (1983, J. Biol. Chem. 258, 13937-13945). The membranes were identified by the abundance of nitrendipine receptors in the transverse tubules, and their relative absence from the plasma membranes. (ii) Plasma membranes and transverse tubules were also isolated from rat skeletal muscle, according to a novel procedure that isolates both fractions from the same common homogenate. (iii) Glucose transporters were detected by D-glucose protectable binding of the specific inhibitor [3H]cytochalasin B, and insulin receptors were detected by saturable binding of 125I-insulin. The concentration of glucose transporters was about threefold (rabbit) or fivefold (rat) higher in the transverse tubule membrane compared to the plasma membrane, whereas the insulin receptor concentration was about the same in both membranes. These results indicate that the glucose transporters on the surface of the muscle are preferentially segregated to the transverse tubules, and this poses interesting consequences on the functional response of glucose transport to insulin in skeletal muscle.  相似文献   

13.
ATP-energized Ca2+ pump in isolated transverse tubules of skeletal muscle   总被引:6,自引:0,他引:6  
A modified protocol for isolation of transverse tubules incorporated an extra stage of purification. The existence of an ATP-energized Ca2+ pump in transverse tubules isolated from rabbit skeletal muscle has been demonstrated. Isolated transverse tubules had a Ca-ATPase activity of 0.78 mu mol/min . mg; this was 300% in excess of that activity attributable to sarcoplasmic reticulum contamination. The distribution of part of the CaATPase activity and ATP-energized Ca2+ uptake coincided with the distribution of transverse tubules in isopycnic sucrose gradients loaded with mechanically disrupted triad junctions. Transverse tubules accumulated over 70 nmol of Ca2+/mg of protein; this uptake was abolished by the Ca2+ ionophore A23187. Neither digitoxin nor monensin inhibited Ca2+ uptake, indicating that Ca2+ accumulation did not occur through a sodium/calcium exchange. Conditions for half-maximal Ca2+ uptake were 5 micro M free Ca2+ and 10 micro M ATP. The Ca2+ pump of isolated transverse tubules was distinguished from the Ca2+ pump of sarcoplasmic reticulum and sarcolemma in that the transverse tubule Ca2+ pump: 1) was not enhanced by oxalate; 2) was not energized by acetyl phosphate, p-nitrophenyl phosphate, or 3-O-methylfluorescein phosphate; and 3) did not hydrolyze p-nitrophenyl phosphate or 3-O-methyl-fluorescein phosphate. Using Ca2+-dependent 3-O-methylfluorescein phosphatase as a marker for sarcoplasmic reticulum, the contamination of the transverse tubule preparation was calculated to be 6%. This agreed with a contamination level of 5% estimated by freeze-fracture electron microscopy.  相似文献   

14.
A multifunctional calmodulin-dependent protein kinase (calmodulin kinase) was purified from the cytosol of rabbit skeletal muscle as a subunit of 58 kDa. A 58-kDa protein in sarcoplasmic reticulum (SR) and sarcolemma (SL) of rabbit skeletal muscle was endogenously phosphorylated in a calmodulin-dependent manner. The 58-kDa protein in SR and SL was considered to be identical to the subunit of cytosol calmodulin kinase on the basis of immunoreactivity, calmodulin binding, and autophosphorylation studies and on the patterns of protease-treated phosphopeptides. Calmodulin kinase showed broad substrate specificity and phosphorylated troponins I and T.  相似文献   

15.
The development and maturation of transverse (T) tubules and sarcoplasmic reticulum (SR) have been studied in pre- and postnatal mouse muscle, using selective "staining" of these membrane systems. As previously reported in the literature, orderly transverse orientation of the T tubules occurs late in development and early T-SR junctions (triads and dyads) are located at random along the T tubules in a predominantly longitudinal orientation. We find that initial appearance of transverse tubules occurs fairly abruptly, and that all early T tubules have a longitudinal orientation. Transverse orientation of the T tubule network, location of triads at the A-I junction, and development of differentiated regions of the SR are coordinated events which occur gradually over a period of about 3 weeks for leg muscle.s The timing of triad development coincides with that reported for the increase in slow calcium current and dihydropyridine binding. Differences in T tubule patterns between muscle fibers of EDL and soleus are apparent only at relatively late stages.  相似文献   

16.
Summary The formation of the sarcoplasmic reticulum (SR) and the transverse tubular system (T-system) in embryonic chick skeletal muscle cells in vitro was studied by either the critical point drying-physical rupturing or physical rupturing-freeze drying together with rotary shadowing. In these cells, two membranous systems were observed. One was composed of flattened sacs which were either isolated or were connected to each other with slender processes to form mostly longitudinally oriented strands. Initially, these sacs had small granules at their surface and were found mainly under the sarcolemma. Later, they became smooth at their surface, extending throughout the cytoplasm to form irregular and dense networks. At later phases, the networks tended to be disposed at right angle to nascent myofibrils, exhibiting a characteristic honeycomb appearance. From the similarities in thin section images, they were identified as developing SR.The other membranous system were tubules with many enlargements. They were frequently associated with coated vesicles which appeared to take part in the formation, elongation, and anastomosing of developing tubules. These tubules could be impregnated with a tannic acid-glutaraldehyde-potassium ferrocyanide complex and, thus, were identified as T-tubules.Abbreviations CPD critical-point drying - ES exoplasmic surface of the sarcolemma - FD freeze-drying - PR physical rupture - PS protoplasmic surface of the sarcolemma - SR sarcoplasmic reticulum - TAGPF tannic acid-glutaraldehyde-potassium ferrocyanide - T-system transverse tubular system  相似文献   

17.
The subcellular distribution of sarcolemmal dihydropyridine receptor (DHPR) and sarcoplasmic reticular triadin and Ca2+ release channel/ryanodine receptor (RyR) was determined in adult rabbit ventricle and atrium by double labeling immunofluorescence and laser scanning confocal microscopy. In ventricular muscle cells the immunostaining was observed primarily as transversely oriented punctate bands spaced at approximately 2-micron intervals along the whole length of the muscle fibers. Image analysis demonstrated a virtually complete overlap of the staining patterns of the three proteins, suggesting their close association at or near dyadic couplings that are formed where the sarcoplasmic reticulum (SR) is apposed to the surface membrane or its infoldings, the transverse (T-) tubules. In rabbit atrial cells, which lack an extensive T-tubular system, DHPR-specific staining was observed to form discrete spots along the sarcolemma but was absent from the interior of the fibers. In atrium, punctate triadin- and RyR-specific staining was also observed as spots at the cell periphery and image analysis indicated that the three proteins were co- localized at, or just below, the sarcolemma. In addition, in the atrial cells triadin- and RyR-specific staining was observed to form transverse bands in the interior cytoplasm at regularly spaced intervals of approximately 2 micron. Electron microscopy suggested that this cytoplasmic staining was occurring in regions where substantial amounts of extended junctional SR were present. These data indicate that the DHPR codistributes with triadin and the RyR in rabbit ventricle and atrium, and furthermore suggest that some of the SR Ca2+ release channels in atrium may be activated in the absence of a close association with the DHPR.  相似文献   

18.
A simple biochemical method for identifying and distinguishing transverse tubule and sarcolemma membranes in preparations of skeletal muscle microsomes is proposed and evaluated. This method is based on the previous observation that the ratio of ouabain to saxitoxin binding sites is five-fold higher in the sarcolemma than the transverse tubule. We measured [3H]saxitoxin and [3H]ouabain binding to microsomes of frog, rat and rabbit muscle in the presence of detergents to expose latent sites. A high density fraction (30--40% sucrose) of the membranes was identified as transverse tubule on the basis of a low ouabain/saxitoxin ratio and its association with sarcoplasmic reticulum. A low density fraction (20--30% sucrose) was identified as transverse tubule containing variable amounts of sarcolemma as judged by a higher ratio of ouabain/saxitoxin sites. Our results suggest that this ratio can be used to determine the surface origin of muscle membrane preparations. Several different methods for purifying transverse tubules were compared by this technique.  相似文献   

19.
Myoblasts fuse to form myotubes, which mature into skeletal muscle fibres. Recent studies indicate that an endogenous retroviral fusion gene, syncytin-1, is important for myoblast fusions in man. We have now expanded these data by examining the immunolocalization of syncytin in human myoblasts induced to fuse. Additionally, we have compared the localization of syncytin with the localization of caveolin-3 and of myogenin, which are also involved in myoblast fusion and maturation. Syncytin was localized to areas of the cell membrane and to filopodial structures connecting myoblasts to each other and to myotubes. Weaker staining was present over intracellular vesicles and tubules. Caveolin-3 was detected in the sarcolemma and in vesicles and tubules in a subset of myoblasts and myotubes. The strongest staining occurred in multinucleated myotubes. Wide-field fluorescence microscopy indicated a partial colocalization of syncytin and caveolin-3 in a subset of myoblasts. Super-resolution microscopy showed such colocalization to occur in the sarcolemma. Myogenin was restricted to nuclei of myoblasts and myotubes and the strongest staining occurred in multinucleated myotubes. Syncytin staining was observed in both myogenin-positive and myogenin-negative cells. Antisense treatment downmodulated syncytin-1 expression and inhibited myoblast cell fusions. Importantly, syncytin-1 antisense significantly decreased the frequency of multinucleated myotubes demonstrating that the treatment inhibited secondary myoblast fusions. Thus, syncytin is involved in human myoblast fusions and is localized in areas of contact between fusing cells. Moreover, syncytin and caveolin-3 might interact at the level of the sarcolemma.  相似文献   

20.
The membrane systems of the cardiac muscle cell of Munida tenuimana G. O. Sars are described. The sarcolemma invaginates at the Z level, forming tubules. Narrow tubules branch off in a longitudinal direction from these transverse and radially arranged tubules, forming a narrow transverse collar at the H level where dyadic and triadic junctions are formed with the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号