首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-transferrin-bound iron is efficiently cleared from serum by the liver and may be primarily responsible for the hepatic damage seen in iron-overload states. We tested the hypothesis that transport of ionic iron is driven by the negative electrical potential difference across the liver cell membrane. Extraction of 55Fe-labeled ferrous iron (1 microM) from Krebs bicarbonate buffer by the perfused rat liver was continuously monitored as the transmembrane potential difference (measured using conventional microelectrodes) was altered over the physiologic range by isosmotic ion substitution. Resting membrane potential in Krebs bicarbonate buffer was -28 +/- 1 mV. Perfusion with 1 microM ferrous iron caused a reversible 3 +/- 1 mV depolarization, and higher concentrations of iron caused even greater depolarization. Conversely, depolarization of the liver cells consistently reduced iron extraction. Replacement of sodium with potassium (70 mM) or choline (131 mM) depolarized the hepatocytes to -15 and -20 mV and decreased iron extraction by 28 and 31%, respectively. Perfusion with bicarbonate-free solutions containing tricine buffer (10 mM) reduced the membrane potential to -23 mV and reduced iron extraction by 18%. In contrast, the high basal extraction of iron (91.1 +/- 1.4%) was not further increased by substitution of nitrate for chloride (-46 mV) or infusion of glucagon (-34 mV). All effects were reversible, suggesting that perfusion with 1 microM iron produced little toxicity. These findings are consistent with an electrogenic transport mechanism for uptake of non-transferrin-bound iron that is driven by the transmembrane potential difference.  相似文献   

2.
The nature of non-transferrin-bound iron in the plasma or serum of iron-overloaded hemochromatosis patients was studied by high performance liquid chromatography (HPLC) and high resolution nuclear magnetic resonance (NMR). 500-MHz proton Hahn spin-echo NMR spectra of plasma or serum, combined with the use of the iron chelator desferrioxamine, suggests complexation of iron ions with citrate and a possible involvement of acetate. Addition of FeCl3 to hemochromatosis samples broadened the NMR signals from citrate. HPLC analysis rigorously confirmed the presence of an iron-citrate complex in ultrafiltrates of plasma or serum studies with added FeCl3 or desferrioxamine supported this conclusion. It is proposed that non-transferrin-bound iron in the plasma of iron-overloaded patients exists largely as complexes with citrate and possibly also as ternary iron-citrate-acetate complexes. The presence of such complexes would account for the ability of non-transferrin-bound iron to be measurable by the bleomycin assay and for its rapid clearance from the circulation by the liver.  相似文献   

3.
Separate pathways for transport of nontransferrin ferric and ferrous iron into tissue cultured cells were demonstrated. Neither the ferric nor ferrous pathway was shared with either zinc or copper. Manganese shared the ferrous pathway but had no effect on cellular uptake of ferric iron. We postulate that ferric iron was transported into cells via beta(3)-integrin and mobilferrin (IMP), whereas ferrous iron uptake was facilitated by divalent metal transporter-1 (DMT-1; Nramp-2). These conclusions were documented by competitive inhibition studies, utilization of a beta(3)-integrin antibody that blocked uptake of ferric but not ferrous iron, development of an anti-DMT-1 antibody that blocked ferrous iron and manganese uptake but not ferric iron, transfection of DMT-1 DNA into tissue culture cells that showed enhanced uptake of ferrous iron and manganese but neither ferric iron nor zinc, hepatic metal concentrations in mk mice showing decreased iron and manganese but not zinc or copper, and data showing that the addition of reducing agents to tissue culture media altered iron binding to proteins of the IMP and DMT-1 pathways. Although these experiments show ferric and ferrous iron can enter cells via different pathways, they do not indicate which pathway is dominant in humans.  相似文献   

4.
The close interrelationship of oxidative stress and iron is evident by the influence of intracellular reactive oxygen species on iron metabolism. Oxygen radicals can lead to release of iron from iron-sulfur proteins and ferritin, and can damage iron-containing enzymes such as mitochondrial aconitase. Treatment of HepG2 human hepatoma cells with antimycin A has two effects relating to iron depending on the concentrations of antimycin A: increase of the labile iron pool and stimulation of non-transferrin-bound iron uptake. Whereas the first could also be generated with nitrofurantoin, the stimulation of non-transferrin-bound iron uptake was only seen with antimycin A and needed considerably higher concentrations. Pretreatment of the cells with ebselen, which scavenges peroxides, reverted only the effect of nitrofurantoin on the labile iron pool. Depletion with iron chelators before or after treatment with antimycin A diminished the stimulation of non-transferrin-bound iron uptake. We conclude that the generation of oxygen radicals in the mitochondria leads to the liberation of iron from mitochondrial enzymes, which enters the labile iron pool. But high concentrations of antimycin A leading to the stimulation of non-transferrin-bound iron uptake is possibly not related to the inhibition of the respiratory chain.  相似文献   

5.
Uptake of [35S]lipoate was studied in perfused rat liver and in isolated rat hepatocytes. During single-pass perfusion of [35S]lipoate about 30% of the radioactivity is retained in the liver. A substantial amount of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive material appears in the effluent perfusate, while hepatic efflux of GSH is unchanged. The hepatic uptake of lipoate, the release of thiols, and also the biliary excretion of 35S-labeled compounds are suppressed by octanoate. In isolated hepatocytes the uptake of lipoate follows saturation kinetics showing a Km value of 38 microM and a Vmax of 180 pmol/mg X 10 s. The uptake is temperature-dependent; from the Arrhenius plot an activation energy of 14.8 kcal/mol at 20 microM lipoate is calculated. At high concentrations of lipoate (above 75 microM) a nonsaturable uptake component becomes predominant. Lipoate uptake is selectively inhibited by medium-chain fatty acids. Only slight inhibition is seen in the presence of long-chain fatty acids, and there is no inhibition with acetate or lactate. Substantial inhibition is also observed with acetylsalicylic acid, but not with taurocholate, bromosulfophthalein or biotin. Lipoate uptake can be inhibited by high concentrations of phloretin (200 microM) and is rather insensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (200 microM). The results indicate that hepatic uptake of lipoate at physiological concentrations is largely carrier-mediated.  相似文献   

6.
The kinetics of plasma clearance of highly purified human placental glucocerebrosidase in rats were biphasic with 75% of the infused dose showing a rapid clearance (t1/2 = 11 min) and the remaining 25% a considerably lower rate (t1/2 = 60 min). The majority of the enzyme (60%) was taken up by the liver. Although saturation kinetics for the clearance or uptake were not observed, the very high hepatic endocytic index (217 microliter/min) of glucocerebrosidase uptake indicated that liver uptake was mediated by an adsorptive endocytic process. Analysis of the cellular distribution of recovered glucocerebrosidase revealed predominantly parenchymal cell uptake with 38% of the exogenous enzyme in hepatocytes and only 2% in sinusoidal cells. High-mannose glycoproteins blocked hepatocyte and sinusoidal cell uptake of glucocerebrosidase equally. Kinetic experiments failed to demonstrate a transfer or shuttle of exogenous glucocerebrosidase from sinusoidal cells to hepatocytes. The possibility was raised that uptake of enzyme by the liver may be mediated by a common receptor that functions in both hepatocytes and sinusoidal cells. The catabolic turnover of exogenous glucocerebrosidase in rat liver was biphasic and the rate of decline was similar in hepatocytes and sinusoidal cells.  相似文献   

7.
8.
Clathrin-associated proteins contain bound nucleotide   总被引:2,自引:0,他引:2  
An alcohol dehydrogenase isolated from Zymomonas mobilis was found to be activated by ferrous ions but not by zinc, after inactivation with metal-complexing agents. Cobaltous ions also re-activated to a lesser extent. It is suggested that in this species the alcohol dehydrogenase naturally contains iron. Kinetic studies on the iron-treated enzyme indicate an 'alcohol activation' phenomenon, which may have physiological relevance in overcoming product inhibition during fermentation.  相似文献   

9.
A system was designed to investigate ferrous iron transport into Bifidobacterium bifidum var. pennsylvanicus. It involved the incubation of the organisms with labeled ferrous iron in the Norris medium at pH 5, in which the bacteria had grown. Iron uptakes were similar under aerobic and anaerobic conditions. Ferrous but not ferric iron was taken up by the organisms. Iron uptake showed saturation kinetics and a marked temperature dependence. 2,4-Dinitrophenol and thenoltrifluoroacetate but not azide or trypsin treatment inhibited iron uptake. Zinc inhibited iron uptake competitively. Iron uptake from used medium was much greater than that from fresh medium at the same pH. It is concluded that ferrous iron uptake by the microorganisms is a carrier-mediated active phenomenon, inhibited by zinc, which may involve a substance elaborated into the medium by the organism.  相似文献   

10.
Recent studies have shown that overexpression of the transmembrane protein Zrt- and Irt-like protein 14 (Zip14) stimulates the cellular uptake of zinc and nontransferrin-bound iron (NTBI). Here, we directly tested the hypothesis that Zip14 transports free zinc, iron, and other metal ions by using the Xenopus laevis oocyte heterologous expression system, and use of this approach also allowed us to characterize the functional properties of Zip14. Expression of mouse Zip14 in RNA-injected oocytes stimulated the uptake of (55)Fe in the presence of l-ascorbate but not nitrilotriacetic acid, indicating that Zip14 is an iron transporter specific for ferrous ion (Fe(2+)) over ferric ion (Fe(3+)). Zip14-mediated (55)Fe(2+) uptake was saturable (K(0.5) ≈ 2 μM), temperature-dependent (apparent activation energy, E(a) = 15 kcal/mol), pH-sensitive, Ca(2+)-dependent, and inhibited by Co(2+), Mn(2+), and Zn(2+). HCO(3)(-) stimulated (55)Fe(2+) transport. These properties are in close agreement with those of NTBI uptake in the perfused rat liver and in isolated hepatocytes reported in the literature. Zip14 also mediated the uptake of (109)Cd(2+), (54)Mn(2+), and (65)Zn(2+) but not (64)Cu (I or II). (65)Zn(2+) uptake also was saturable (K(0.5) ≈ 2 μM) but, notably, the metal-ion inhibition profile and Ca(2+) dependence of Zn(2+) transport differed from those of Fe(2+) transport, and we propose a model to account for these observations. Our data reveal that Zip14 is a complex, broad-scope metal-ion transporter. Whereas zinc appears to be a preferred substrate under normal conditions, we found that Zip14 is capable of mediating cellular uptake of NTBI characteristic of iron-overload conditions.  相似文献   

11.
The hepatic uptake of the hormone 1,25-dihydroxyvitamin D3 has been studied, in vivo, using the multiple indicator dilution technique. The fractional uptake of 1,25-dihydroxyvitamin D3 during a single circulatory passage across the dog liver has been estimated at 34.4 +/- 3.3% while its hepatic clearance was estimated at 364.3 +/- 94.1 mL/min. The hepatic uptake of 1,25-dihydroxyvitamin D3 is discussed in relation to its systemic bioavailability following intravenous or oral administration as well as in relation to the hepatic uptake of other vitamin D sterols; it is postulated that the hepatic uptake of vitamin D sterols does not seem to be mediated by specific receptors on the liver plasma membrane; it seems, however, that the hepatic uptake of vitamin D sterols may be inversely related to their relative affinity for the circulating carrier, the vitamin D binding protein.  相似文献   

12.
Human porphyria cutanea tarda (PCT) is an unusual consequence of common hepatic disorders such as alcoholic liver disease and iron overload, where hepatic iron plays a key role in the expression of the metabolic lesion, i.e., defective hepatic decarboxylation of porphyrinogens. In this investigation, kinetic studies on a partially purified rat liver uroporphyrinogen decarboxylase have been conducted under controlled conditions to determine how iron perturbs porphyrinogen decarboxylation in vitro. The enzyme, assayed strictly under anaerobic conditions in the dark, was inhibited progressively by ferrous iron. Approximately 0.45 mM ferrous ammonium sulfate was required to observe about 50% inhibition of enzyme activity measured with uroporphyrinogen I as substrate. We showed that (a) all the steps of enzymatic decarboxylation (octa-, hepta-, hexa-, and pentacarboxylic porphyrinogen of isomer I series) were inhibited by ferrous iron. The inhibition was competitive with respect to uroporphyrinogen I and III substrates; (b) the cations, e.g., Fe3+ and Mg2+, had no effect, whereas sulfhydryl group specific cations and compounds such as Hg2+, Zn2+, p-mercuribenzoate, and 5,5'-dithiobis(2-nitrobenzoate) all inhibited the enzyme; (c) the enzyme could be protected from inhibition by Fe2+ and p-mercuribenzoate by preincubation with pentacarboxylic porphyrinogen, a natural substrate and competitive inhibitor. These data suggest for the first time a direct interaction of ferrous iron with cysteinyl residue(s) located at the active site(s) of the enzyme.  相似文献   

13.
Non-transferrin-bound iron, commonly found in the plasma of iron-overloaded individuals, permeates into cells via pathways independent of the transferrin receptor. This may lead to excessive cellular accumulation of labile iron followed by oxidative damage and eventually organ failure. Mitochondria are the principal destination of iron in cells and a primary site of prooxidant generation, yet their mode of acquisition of iron is poorly understood. Using fluorescent probes sensitive to iron or to reactive oxygen species, targeted to cytosol and/or to mitochondria, we traced the ingress of labile iron into these compartments by fluorescence microscopy and quantitative fluorimetry. We observed that 1) penetration of non-transferrin-bound iron into the cytosol and subsequently into mitochondria occurs with barely detectable delay and 2) loading of the cytosol with high-affinity iron-binding chelators does not abrogate iron uptake into mitochondria. Therefore, a fraction of non-transferrin-bound iron acquired by cells reaches the mitochondria in a nonlabile form. The physiological role of occluded iron transfer might be to confer cells with a "safe and efficient cytosolic iron corridor" to mitochondria. However, such a mechanism might be deleterious in iron-overload conditions, because it could lead to surplus accumulation of iron in these critical organelles. transport; fluorescence; oxidative stress  相似文献   

14.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   

15.
BACKGROUND: The molecular mechanisms by which iron is physiologically transported trough the cellular membranes are still only partially understood. Several studies indicate that a reduction step of ferric iron to ferrous is necessary, both in the case of transferrin-mediated and transferrin-independent iron uptake. Recent studies from our laboratory described gamma-glutamyltransferase activity (GGT) as a factor capable to effect iron reduction in the cell microenvironment. GGT is located on the outer aspect of plasma membrane of most cell types, and is often expressed at high levels in malignant tumors and their metastases. The present study was aimed at verifying the possibility that GGT-mediated iron reduction may participate in the process of cellular iron uptake. RESULTS: Four distinct human tumor cell lines, exhibiting different levels of GGT activity, were studied. The uptake of transferrin-bound iron was investigated by using 55Fe-loaded transferrin, as well as by monitoring fluorimetrically the intracellular iron levels in calcein-preloaded cells. Transferrin-independent iron uptake was investigated using 55Fe complexed by nitrilotriacetic acid (55Fe-NTA complex).The stimulation of GGT activity, by administration to cells of the substrates glutathione and glycyl-glycine, was generally reflected in a facilitation of transferrin-bound iron uptake. The extent of such facilitation was correlated with the intrinsic levels of the enzyme present in each cell line. Accordingly, inhibition of GGT activity by means of two independent inhibitors, acivicin and serine/boric acid complex, resulted in a decreased uptake of transferrin-bound iron. With Fe-NTA complex, the inhibitory effect - but not the stimulatory one - was also observed. CONCLUSION: It is concluded that membrane GGT can represent a facilitating factor in iron uptake by GGT-expressing cancer cells, thus providing them with a selective growth advantage over clones that do not possess the enzyme.  相似文献   

16.
The uptake of iron from transferrin by isolated rat hepatocytes varies in parallel with plasma membrane NADH:ferricyanide oxidoreductase activity, is inhibited by ferricyanide, ferric, and ferrous iron chelators, divalent transition metal cations, and depends on calcium ions. Iron uptake does not depend on endosomal acidification or endocytosis of transferrin. The results are compatible with a model in which iron, at transferrin concentrations above that needed to saturate the transferrin receptor, is taken up from transferrin predominantly by mechanisms located to or contiguous with the plasma membrane. The process involves labilization and reduction of transferrin-bound iron by cooperative proton and electron fluxes. A model which combines the plasma membrane mechanism and the receptor-mediated endocytosis mechanism is presented.  相似文献   

17.
18.
Background. – Under conditions of iron overload non-transferrin-bound iron (NTBI) occurs in the circulation and is mainly cleared by the liver. Beside iron, gallium and aluminum enhance accumulation of NTBI. We try to characterize the mechanism and metal-mediated regulation of NTBI uptake using cultivated primary rat hepatocytes.  相似文献   

19.
Biochemistry of nonheme iron in man. II. Absorption of iron   总被引:2,自引:0,他引:2  
The currently accepted concept of iron absorption proposes first the entry of iron into the intestinal mucosal cell through the brush border membrane. It is a relatively slow process. In the cell, the iron may be transferred to plasma or become sequestered by ferritin. The latter becomes unavailable for transfer to plasma and is exfoliated and excreted. In iron deficiency and idiopathic hemochromatosis, the rate of iron uptake into the intestinal mucosal cell is increased and entry into ferritin is decreased, whereas the rate of transfer to plasma remains constant. The reverse occurs in case of secondary iron overload. It is currently accepted that a transferrin, whose levels increase in iron deficiency, enters the intestinal lumen from the liver via bile, where it may sequester iron and bring it into the cells by the process of endocytosis. Iron presented as inorganic ferric or ferrous salts may also be absorbed, though the more soluble ferrous salts are adsorbed much more rapidly. Heme iron is absorbed very effectively, though it is not subject to regulation by the individual's iron status to the same extent as is inorganic iron absorption. Brush border membranes apparently contain saturable iron receptors for inorganic iron, but whether or not the absorption process requires energy is an open question. Absorption of iron may also be affected by its availability; different food components affect iron absorbability to a different extent.  相似文献   

20.
The effect of transferrin saturation on internal iron exchange   总被引:1,自引:0,他引:1  
Radioiron was introduced into the intestinal lumen to evaluate absorption, injected as nonviable red cells to evaluate reticuloendothelial (RE) processing of iron, and injected as hemoglobin to evaluate hepatocyte iron processing. Redistribution of iron through the plasma was evaluated in control animals and animals whose transferrin was saturated by iron infusion. Radioiron introduced into the lumen of the gut as ferrous sulfate and as transferrin-bound iron was absorbed about half as well in iron-infused animals, and absorbed iron was localized in the liver. The similar absorption of transferrin-bound iron suggested that absorption of ferrous iron occurred via the mucosal cell and did not enter by diffusion. The decrease in absorption was associated with an increase in mucosal iron and ferritin content produced by the iron infusion. An inverse relationship (r = -0.895) was shown between mucosal ferritin iron and absorption. When iron was injected as nonviable red cells, it was deposited predominantly in reticuloendothelial cells of the spleen. Return of this radioiron to the plasma was only 6% of that in control animals. While there was some movement of iron from spleen to liver, this could be accounted for by intravascular hemolysis. Injected hemoglobin tagged with radioiron was for the most part taken up and held by the liver. Some 13% initially localized in the marrow in iron-infused animals was shown to be storage iron unavailable for hemoglobin synthesis. These studies demonstrate the hepatic trapping of absorbed iron and the inability of either RE cell or hepatocyte to release iron in the transferrin-saturated animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号