首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Walking appears to be passively unstable in the lateral direction, requiring active feedback control for stability. The central nervous system may control stability by adjusting medio-lateral foot placement, but potentially with a metabolic cost. This cost increases with narrow steps and may affect the preferred step width. We hypothesized that external stabilization of the body would reduce the active control needed, thereby decreasing metabolic cost and preferred step width. To test these hypotheses, we provided external lateral stabilization, using springs pulling bilaterally from the waist, to human subjects walking on a force treadmill at 1.25 m/s. Ten subjects walked, with and without stabilization, at a prescribed step width of zero and also at their preferred step width. We measured metabolic cost using indirect calorimetry, and step width from force treadmill data. We found that at the prescribed zero step width, external stabilization resulted in a 33% decrease in step width variability (root-mean-square) and a 9.2% decrease in metabolic cost. In the preferred step width conditions, external stabilization caused subjects to prefer a 47% narrower step width, with a 32% decrease in step width variability and a 5.7% decrease in metabolic cost. These results suggest that (a). human walking requires active lateral stabilization, (b). body lateral motion is partially stabilized via medio-lateral foot placement, (c). active stabilization exacts a modest metabolic cost, and (d). humans avoid narrow step widths because they are less stable.  相似文献   

2.
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control.  相似文献   

3.
Previous research has indicated that the sagittal plane gait dynamics of humans are more stable and less dependent on active neural control, while the frontal plane dynamics are less stable and require greater neural control. The higher neural demands of the frontal plane dynamics are reflected in a more variable step width than step length. Greater variability in the step width occurs because humans modulate their foot placement for each step to ensure stability and prevent falls. Compared to other terrestrial animals, penguins appear to have excessive amount of frontal plane motion in their gait that is characterized as waddling. If excessive frontal plane motion requires additional neural control and is associated with falls, it would seem that evolutionary pressures would have eliminated such locomotive strategies. Here we measured the step length and width variability to determine if waddling results in a less stable gait. Remarkably, the variability of the step width was less than the variability of the step length. These results are directly opposite of what has been reported for humans. Hence, our data indicate that waddling may be an effective strategy for ensuring stability in the frontal plane dynamics.  相似文献   

4.
An actuated, lateral leg spring model is developed to investigate lateral plane locomotion dynamics and stability on inclines. A single actuation input, the force-free leg length, is varied in a feedforward fashion to explicitly and implicitly match prescribed lateral and fore-aft force profiles, respectively. Forward dynamic simulations incorporating the prescribed leg actuation are employed to identify periodic orbits for gaits in which the leg acts to either push the body away from or pull the body towards the foot placement point. Gait stability and robustness to external perturbation are found to vary significantly as a function of slope and velocity for each type of leg function. Results of these analyses suggest that the switch in leg function from pushing to pulling is governed by gait robustness, and occurs at increasing inclines for increasing velocities.  相似文献   

5.
Typical healthy walking displays greater variability in the mediolateral direction compared to the anteroposterior direction. This greater variability is thought to represent increased uncertainty in movement. As a result, it has been postulated that the mediolateral direction of gait requires more active control by the central nervous system while the anteroposterior direction is controlled through passive actions. However, this theory has only been tested on gait where progression occurs in the anteroposterior direction. Therefore, the purpose of this study was to investigate how the amount of variability is affected if progression occurs in the mediolateral direction using a lateral stepping gait. Results showed the anteroposterior direction had a significantly greater amount of variability than the mediolateral direction (p<0.001). The results do not support current models of a partition of active control to different anatomical planes. Rather, it seems that other physical entities involved in motion, such as momentum and inertia, are able to decrease the dependence on active control from the central nervous system. In a lateral stepping gait, such physical entities were no longer assisting in the anteroposterior direction but had a larger impact in the mediolateral direction as it was the direction of progression. As a result variability in the anteroposterior direction increased. Thus, it is possible to infer increased reliance on active control from the central nervous system in the direction orthogonal to progression.  相似文献   

6.
Experimental studies of human walking have shown that within an individual step, variations in the center of mass (CoM) state can predict corresponding variations in the next foot placement. This has been interpreted by some to indicate the existence of active control in which the nervous system uses the CoM state at or near mid-stance to regulate subsequent foot placement. However, the passive dynamics of the moving body and/or moving limbs also contribute (perhaps strongly) to foot placement, and thus to its variation. The extent to which correlations of CoM state to foot placement reflect the effects of within-step active control, those of passive dynamics, or some combination of both, remains an important and still open question. Here, we used an open-loop-stable 2D walking model to show that this predictive ability cannot by itself be taken as evidence of within-step active control. In our simulations, we too find high correlations between the CoM state and subsequent foot placement, but these correlations are entirely due to passive dynamics as our system has no active control, either within a step or between steps. This demonstrates that any inferences made from such correlations about within-step active control require additional supporting evidence beyond the correlations themselves. Thus, these within-step predictive correlations leave unresolved the relative importance of within-step active control as compared to passive dynamics, meaning that such methods should be used to characterize control in human walking only with caution.  相似文献   

7.
The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.  相似文献   

8.
Biped gait stabilization via foot placement   总被引:7,自引:1,他引:6  
It is shown that stable biped gaits can be achieved by discrete foot placement based on feedback of information available at the time of foot placement. The model, developed by Townsend (1981, J. Biomechanics 14, p. 727) to evaluate the coordinations of torso motions, subsumes most of the salient body members and motions. The modeling yielded a generalized inverted pendulum with a movable support point which physically defines lateral foot placement. The principal result is that stable gaits can be defined by foot placements which are a linear function of the system center of mass position and velocity at the time of foot placement (only). Gaits may be 'smooth' or may have impulsive corrections to adjust the character of the motions and foot placement. Several general algorithms and specific simulations are presented, and calculations for non-impulsive gaits and impulsive corrections are presented. The model predictions are compared with published data. The predictions are sufficiently close to the data such that the general algorithms appear to be validated. Of particular interest are the non-sinusoidal character of the motions and the relatively simple algorithms. Indeed, the simplicity of the algorithms suggests the practical possibility of legged mobile robots. Accordingly, further investigation seems warranted for determining the parametric variation and control of gait. Some attention is also given to continuous-feedback control such as would exist during double-leg support and in specialized tasks such as rope walking or skating. Subsequent investigation will consider superposition of single and double leg support, although clearly the discrete gaits pose the more restrictive stability problem.  相似文献   

9.
Fossil evidence for longitudinal arches in the foot is frequently used to constrain the origins of terrestrial bipedality in human ancestors. This approach rests on the prevailing concept that human feet are unique in functioning with a relatively stiff lateral mid-foot, lacking the significant flexion and high plantar pressures present in non-human apes. This paradigm has stood for more than 70 years but has yet to be tested objectively with quantitative data. Herein, we show that plantar pressure records with elevated lateral mid-foot pressures occur frequently in healthy, habitually shod humans, with magnitudes in some individuals approaching absolute maxima across the foot. Furthermore, the same astonishing pressure range is present in bonobos and the orangutan (the most arboreal great ape), yielding overlap with human pressures. Thus, while the mean tendency of habitual mechanics of the mid-foot in healthy humans is indeed consistent with the traditional concept of the lateral mid-foot as a relatively rigid or stabilized structure, it is clear that lateral arch stabilization in humans is not obligate and is often transient. These findings suggest a level of detachment between foot stiffness during gait and osteological structure, hence fossilized bone morphology by itself may only provide a crude indication of mid-foot function in extinct hominins. Evidence for thick plantar tissues in Ardipithecus ramidus suggests that a human-like combination of active and passive modulation of foot compliance by soft tissues extends back into an arboreal context, supporting an arboreal origin of hominin bipedalism in compressive orthogrady. We propose that the musculoskeletal conformation of the modern human mid-foot evolved under selection for a functionally tuneable, rather than obligatory stiff structure.  相似文献   

10.
The inherent dynamics of bipedal, kneed mechanisms are studied with emphasis on the existence and stability, of repetitive gait in a three-dimensional environment, in the absence of external, active control. The investigation is motivated by observations that sustained anthropomorphic locomotion is largely a consequence of geometric and inertial properties of the mechanism. While the modeling excludes active control, the energy dissipated in ground and knee collisions is continuously re-injected by considering gait down slight inclines. The paper describes the dependence of the resulting passive gait in vertically constrained and unconstrained mechanisms on model parameters, such as ground compliance and ground slope. We also show the possibility of achieving statically unstable gait with appropriate parameter choices.  相似文献   

11.
An active head-neck model is introduced in this work to predict human-dynamic response to different vibration magnitudes during fore-aft whole-body vibration. The proposed model is a rigid-link dynamic system augmented with passive spring-damper tissue-like elements and additional active dampers that resemble the active part of the muscles. The additional active dampers are functions of the input displacement, velocity, and acceleration and are based on active control theories and a kd-tree data-searching scheme. Five human subjects exposed to random fore-aft vibration with frequency content of 0.5-10 Hz were tested under different vibration with magnitudes of 0.46 m/s(2), 1.32 m/s(2), and 1.66 m/s(2) rms. The results showed that the proposed model was able to reasonably capture the softening characteristics of the human head-neck response during fore-aft whole-body vibration of different magnitudes.  相似文献   

12.
During human walking, perturbations to the upper body can be partly corrected by placing the foot appropriately on the next step. Here, we infer aspects of such foot placement dynamics using step-to-step variability over hundreds of steps of steady-state walking data. In particular, we infer dependence of the ‘next’ foot position on upper body state at different phases during the ‘current’ step. We show that a linear function of the hip position and velocity state (approximating the body center of mass state) during mid-stance explains over 80% of the next lateral foot position variance, consistent with (but not proving) lateral stabilization using foot placement. This linear function implies that a rightward pelvic deviation during a left stance results in a larger step width and smaller step length than average on the next foot placement. The absolute position on the treadmill does not add significant information about the next foot relative to current stance foot over that already available in the pelvis position and velocity. Such walking dynamics inference with steady-state data may allow diagnostics of stability and inform biomimetic exoskeleton or robot design.  相似文献   

13.
The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee–ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients.  相似文献   

14.
People at risk of falling exhibit increased gait variability, which may predict future falls. However, the causal mechanisms underlying these correlations are not well known. Increased neuronal noise associated with aging likely leads to increased gait variability, which could in turn lead to increased fall risk. This paper presents a model of how changes in neuromuscular noise independently affect gait variability and probability of falling, and aims to determine the extent to which changes in gait variability directly predict fall risk. We used a dynamic walking model that incorporates a lateral step controller to maintain lateral stability. Noise was applied to this controller to approximate neuromuscular noise in humans. Noise amplitude was varied between low amplitudes that did not induce falls and high amplitudes for which the model always fell. With increases in noise amplitude, the model fell more often and after fewer steps. Gait variability increased with noise amplitude and predicted increased probability of falling. Importantly, these relationships were not linear. At either low gait variability or very high gait variability, small increases in noise and variability affected probability of falling very little. Conversely, at intermediate noise and/or variability levels, the same small increases resulted in large increases in probability of falling. Our results validate the idea that age-related increases in neuromuscular noise likely play a direct contributing role in increasing fall risk. However, neuromuscular noise remains only one of many important factors that need to be considered. These findings have important implications for fall prevention research and practice.  相似文献   

15.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

16.
An unbiased understanding of foot kinematics has been difficult to achieve due to the complexity of foot structure and motion. We have developed a protocol for evaluation of foot kinematics during barefoot walking based on a multi-segment foot model. Stereophotogrammetry was used to measure retroreflective markers on three segments of the foot plus the tibia. Repeatability was evaluated between-trial, between-day and between-tester using two subjects and two testers. Subtle patterns and ranges of motion between segments of the foot were consistently detected. We found that repeatability between different days or different testers is primarily subject to variability of marker placement more than inter-tester variability or skin movement. Differences between inter-segment angle curves primarily represent a shift in the absolute value of joint angles from one set of trials to another. In the hallux, variability was greater than desired due to vibration of the marker array used. The method permits objective foot measurement in gait analysis using skin-mounted markers. Quantitative and objective characterisation of the kinematics of the foot during activity is an important area of clinical and research evaluation. With this work we hope to have provided a firm basis for a common protocol for in vivo foot study.  相似文献   

17.
As joint coupling variability has been associated with running-related lower extremity injury, the purpose of this study was to identify how variability within the foot may be different between forefoot (FFS) and rearfoot strike (RFS) runners. Identifying typical variability in uninjured runners may contribute to understanding of ideal coordination associated with running foot strike patterns.Fifteen FFS and 15 RFS runners performed a maximal-effort 5 km treadmill run. A 7-segment foot model identified 6 functional articulations (rearfoot, medial and lateral midfoot and forefoot, and 1st metatarsophalangeal) for analysis. Beginning and end of the run motion capture data were analyzed. Vector coding was used to calculate 6 joint couples. Standard deviations of the coupling angles were used to identify variability within subphases of stance (loading, mid-stance, terminal, and pre-swing). Mixed between-within subjects ANOVAs compared differences between the foot strikes, pre and post run.Increased variability was identified within medial foot coupling for FFS and within lateral foot coupling for RFS during loading and mid-stance. The exhaustive run increased variability during mid-stance for both groups.Interpretation. Joint coupling variability profiles for FFS and RFS runners suggest different foot regions have varying coordination needs which should be considered when comparing the strike patterns.  相似文献   

18.
Investigations of human foot and ankle biomechanics rely chiefly on cadaver experiments. The application of proper force magnitudes to the cadaver foot and ankle is essential to obtain valid biomechanical data. Data for external ground reaction forces are readily available from human motion analysis. However, determining appropriate forces for extrinsic foot and ankle muscles is more problematic. A common approach is the estimation of forces from muscle physiological cross-sectional areas and electromyographic data. We have developed a novel approach for loading the Achilles and posterior tibialis tendons that does not prescribe predetermined muscle forces. For our loading model, these muscle forces are determined experimentally using independent plantarflexion and inversion angle feedback control. The independent (input) parameters -- calcaneus plantarflexion, calcaneus inversion, ground reaction forces, and peroneus forces -- are specified. The dependent (output) parameters -- Achilles force, posterior tibialis force, joint motion, and spring ligament strain -- are functions of the independent parameters and the kinematics of the foot and ankle. We have investigated the performance of our model for a single, clinically relevant event during the gait cycle. The instantaneous external forces and foot orientation determined from human subjects in a motion analysis laboratory were simulated in vitro using closed-loop feedback control. Compared to muscle force estimates based on physiological cross-sectional area data and EMG activity at 40% of the gait cycle, the posterior tibialis force and Achilles force required when using position feedback control were greater.  相似文献   

19.
Footprint analysis of gait using a pressure sensor system.   总被引:12,自引:0,他引:12  
The purpose of this study was to investigate if the detailed pressure data of the footprints of normal gait add essential information to the spatio-temporal variables of gait. The gait of 62 healthy adult subjects was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. A typical activation pattern of the sensors with two peaks of active area and peak pressure distribution during normal walking was obtained. The first peak reflected the heel strike, and the second peak reflected push-off at the end of the stance phase. The lowest pressure values were in the midfoot, where the lateral part of the foot activated sensors more than the medial part. The footprint patterns of right and left legs were symmetrical and corresponded with the symmetry found in the spatio-temporal variables of gait. The variability for the active area and the peak pressure were more pronounced for the lateral part of the midfoot and a smaller variation was seen in areas with concentrated observations (e.g. 1st, 2nd and 5th lateral trapezoids). Increasing active area in the forefoot was associated with decreasing pressure sensor activity in the midfoot. The footprint patterns identified the symmetry between the legs and at the same time revealed the velocity performance.  相似文献   

20.
The cyclic nature of walking can lead to repetitive stress and associated complications due to the rate of loading (ROL) experienced by the body at the initial contact of the foot with the ground. An individual's gait kinematics at initial contact has been suggested to give rise to the ROL, and a repetitive, high ROL may lead to several disorders, including osteoarthritis. Additionally, proprioception, the feedback signaling of limb position and movement, may play a role in how the foot strikes the ground and thus, the ROL. Our goal was to explore the relationship between proprioception, gait kinematics and ROL. Thirty-eight women were recruited for gait analysis, and the gait characteristics 50 ms prior to and at initial contact were examined. Two proprioception tests, joint angle reproduction and threshold to detect passive motion were used to examine the subject's proprioceptive acuity. Our results indicate that individuals with a larger knee angle (i.e., greater extension) 50 ms prior to initial contact (IC) experience a higher ROL during gait and have poorer proprioceptive scores. However, it remains unclear whether poor proprioception causes a high ROL or if a high ROL damages the mechanoreceptors involved in proprioception, but the apparent relationship is significant and warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号