首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DnrI protein, essential for the biosynthesis of daunorubicin in Streptomyces peucetius , was purified almost to homogeneity from dnrI expression strains of Escherichia coli and S. peucetius through several steps of chromatography. The proteins purified from both organisms had identical chromatographic and electrophoretic behaviour. Purified His-tagged or native DnrI was used to conduct DNA-binding assays by gel mobility-shift analysis, and the results showed no significant difference in the DNA-binding activity of native or His-tagged proteins. DnrI binds specifically to DNA segments containing the intergenic regions separating the putative dnrG–dpsABCD and dpsEF operons, and the dnrC gene and dnrDKPSQ operon. DNase I footprinting assays indicated that the DNA-binding sites for DnrI extended from upstream of the −10 to −35 regions of the dnrG or dpsE promoters to include about 65 bp of the dnrG – dpsE intergenic region and about 80 bp of the dnrC – dnrD intergenic region. Both binding sites contain imperfect inverted repeat sequences of 6–10 bp with a 5'-TCGAG-3' consensus sequence that was present in 4 out of 10 other promoter regions in the cluster of daunorubicin biosynthesis genes.  相似文献   

2.
3.
4.
5.
Plastid DNA is a circular molecule of 120-150 kbp, which is organized into a protein-DNA complex called a nucleoid. Although various plastids other than chloroplasts exist, such as etioplasts, amyloplasts and chromoplasts, it is not easy to observe plastid nucleoids within the cells of many non-green tissues. The PEND (plastid envelope DNA-binding) protein is a DNA-binding protein in the inner envelope membrane of developing chloroplasts, and a DNA-binding domain called cbZIP is present at its N-terminus. We made various PEND-green fluorescent protein (GFP) fusion proteins using the cbZIP domains from various plants, and found that they were localized in the chloroplast nucleoids in transient expression in leaf protoplasts. In stable transformants of Arabidopsis thaliana, PEND-GFP fusion proteins were also localized in the nucleoids of various plastids. We have succeeded in visualizing plastid nucleoids in various intact tissues using this stable transformant. This technique is useful in root, flower and pollen, in which it had been difficult to observe plastid nucleoids. The relative arrangement of nucleoids within a chloroplast was kept unchanged when the chloroplast moved within a cell. During the division of plastid, nucleoids formed a network structure, which made possible equal partition of nucleoids.  相似文献   

6.
7.
8.
9.
10.
Amida was first isolated from a rat hippocampal cDNA library as an Arc-associated protein. Although previous studies have shown that Amida mRNA is predominantly expressed and developmentally regulated in rat testis and overexpression induces apoptosis, the function of Amida remains unclear. In this study, we found that overexpression of Amida inhibited cell growth. Flow cytometry analysis showed that Amida caused cell cycle inhibition in the S-phase and blocked cell cycle from entry into mitosis. Attempting to elucidate Amida effect on the cell cycle, we found that Amida was interacted with Cdc2 in mitosis and Amida's overexpression resulted in a decrease in Cdc2 kinase activity. In addition, Amida showed DNA-binding ability with DNA-affinity column chromatography. A region (aa, 76–189) between the two nuclear localization signals was found to be responsible for cell growth inhibition and DNA-binding activity, implying that DNA-binding activity may be necessary for Amida to repress cell cycle. Moreover, Amida was phosphorylated by Cdc2 kinase in vitro and Ser-180 of Amida was identified as the phosphorylation site. Furthermore, AmidaS180G (eliminate phosphorylation of Ser-180) showed stronger DNA-binding activity. Taken together, the data suggest that Amida may play an important role in cell cycle and may be partly regulated by Cdc2 kinase.  相似文献   

11.
Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ~16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (~23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.  相似文献   

12.
13.
《Gene》1996,168(2):183-187
The genomic nucleotide sequence for the region of 66 to 77 map units (m.u.) of mouse adenovirus type 1 (MAV-1) was determined and predicted to encode proteins homologous to the human adenovirus (Ad) 100-kDa, 33-kDa and DNA-binding proteins (DBP). The putative MAV-1 100-kDa protein has 65-70% amino-acid similarity to 100-kDa proteins from five different human Ad serotypes. The mRNA for the putative 33-kDa protein is internally spliced within the coding sequence, as are its human Ad counterparts [Oosterom-Dragon and Anderson, J. Virol. 45 (1983) 251–;263]. The N-terminal region of the putative MAV-1 33-kDa protein has 41–;44% similarity to two human Ad 33-kDa N-termini, and the C-terminal regions are more conserved, with 60–;65% similarity. The MAV-1 DBP is predicted to be encoded in this region and was compared to six different human Ad DBP N- and C-termini. The N-termini of the MAV-1 and Ad DBP were 33–48% similar and the C-termini were 56–60% similar. The MAV-1 DBP contains conserved regions (CR) 1, 2 and 3, and it retains important residues for a putative zinc finger (Zf) motif identified in Ad DBP [Eagle and Klessig, Virology 187 (1992) 777–;787]. Additional sequence features of these three proteins have also been identified.  相似文献   

14.
15.
16.
17.
18.
19.
Summary It has been suggested that cyanobacteria served as the ancestors for rhodophytic algae whose chloroplasts contain chlorophyll a and phycobilins, and that a rhodophyte served as the plastid source for chromophytic plants that contain chlorophylls a and c. Although organellar DNA has been used to assess phylogenetic relatedness among terrestrial plants and green algae whose chloroplasts contain chlorophylls a and b, few data are presently available on the molecular profile of plastid DNA in chromophytes or rhodophytes.In this study the chloroplast genome of the rhodophytic, filamentous alga Griffithsia pacifica has been characterized. DNA was purified from isolated chloroplasts using protease k treatment and sodium dodecyl sulfate lysis followed by density centrifugation in Hoescht-33258 dye-CsCl gradients. Single and double restriction enzyme digests demonstrate that the DNA prepared from purified chloroplasts has a genome size of about 178 kilobase pairs (kb). A restriction map of this chloroplast genome demonstrates that it is circular and, unlike the chloroplast DNA (cpDNA) in most other plants, contains only a single ribosomal DNA operon. DNA was also purified from the mitochondria that co-isolated with chloroplasts. Mitochondrial DNA consists of molecules that range in size from 27 to 350 kb based on restriction endonuclease digestion and electron microscopic analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号