共查询到20条相似文献,搜索用时 62 毫秒
1.
3.
4.
甲烷氧化细菌的电子显微镜观察 总被引:1,自引:2,他引:1
采用冷冻蚀刻、超薄切片和负染色电镜技术,对 Methylomonas sp. 761M和Methylosinus sp.81Z两抹甲烷氧化细菌的细微结构进行了观察。在冷冻蚀刻中,缅胞从质膜和细胞壁外膜的中央劈开,暴露出四个断裂面。各个断面的结构有所不同,显示出颗粒、小杆、乳状突起、小坑和光滑区等结构。冷冻蚀刻揭示的多层结构,与超薄切片和负染色观察结果一致。此外,对甲烷氧化细菌细胞壁表面图案,细胞内膜结构进行了观察。 相似文献
5.
6.
7.
甲烷氧化过程中铜的作用研究进展 总被引:1,自引:1,他引:1
甲烷生物氧化在全球甲烷平衡和温室效应控制中扮演着重要的角色,而铜是甲烷生物氧化过程中的重要影响因子.一方面,铜是调控不同类型甲烷单加氧酶表达的主要影响因子,是组成颗粒性甲烷单加氧酶的必需金属元素;另一方面,在自然环境体系中,铜含量及其形态的变化对甲烷氧化菌的分布、代谢甲烷和非甲烷类有机化合物的能力以及甲烷氧化菌的特异性铜捕获系统也会产生较大影响.准确把握铜在甲烷生物氧化过程中发挥的作用将有助于全面了解甲烷生物氧化过程,进而更好地指导甲烷氧化微生物在温室气体减排及非甲烷有机物污染修复中的应用.本文主要从铜的角度,概述了铜对甲烷氧化菌的分布和活性的影响,介绍了铜在调控甲烷单加氧酶的表达和活性以及调节甲烷氧化菌铜捕获系统方面的作用,并展望了其研究方向. 相似文献
8.
甲烷氧化菌及甲烷单加氧酶的研究进展 总被引:9,自引:0,他引:9
甲烷氧化菌是以甲烷作为唯一碳源和能源进行同化和异化代谢的微生物,其关键酶之一是甲烷单加氧酶(MMOs),可以在氧气的作用下催化甲烷等低碳烷烃或烯烃羟基化或环氧化,甲烷氧化菌在自然界碳循环和工业生物技术中具有重要的应用价值.因此,近20年来对于甲烷氧化菌和MMOs的研究一直倍受生物学家的关注.以下从现代生物技术的角度,对近年来国内外在甲烷氧化菌的分类与分布,MMOs的结构与功能、甲烷氧化菌与MMOs的基因工程等方面取得的研究成果进行了总结,全面综述了甲烷氧化菌及MMOs的应用基础研究现状,并对其今后的研究和应用方向提出了展望. 相似文献
9.
甲烷利用细菌降解三氯乙烯的研究 总被引:5,自引:0,他引:5
GYJ3菌株细胞微细结构的电镜观察结果表明:它具有Ⅱ型甲烷利用细菌的特征,应归属于Ⅱ型菌。考察了Cu2+浓度、培养气相中甲烷浓度对菌株细胞中甲烷单加氧酶(EC1.14.13.25,简称MMO)活性的影响。结果表明,培养液中Cu2+浓度为1.5μmol/L,培养气相中甲烷:空气比为2∶1时,可溶性甲烷单加氧酶占细胞中MMO总量的95%。研究了GYJ3菌株细胞悬浮液降解三氯乙烯过程。实验结果表明,GYJ3菌株能够降解不同浓度的三氯乙烯,较高浓度的三氯乙烯对降解反应没有明最的抑制作用。加入甲酸盐作为电子给体能够提高三氯乙烯降解反应速率。实验中观察到GYJ3菌株降解三氯乙烯过程中反应速率随着反应的进行而下降,在三氯乙烯降解过程中三氯乙烯氧化产物是导致细胞失活的主要原因。实验室中测定了GYJ3菌株单位重量细胞降解三氯乙烯极限量,它可作为评价细菌降解三氯乙烯能力的重要指标。 相似文献
10.
甲烷氧化细菌中的关键酶系甲烷单加氧酶是一个含双核铁的多组份氧化酶,常温、常压下能够催化甲烷转化为甲醇。对甲烷氧化细菌Methylomonas sp.GYJ3中溶解性甲烷单加氧酶基因和16SrDNA进行了测序与分析。利用已知相关基因数据库信息,设计了PCR引物和测序引物,获得了满意的测序结果。全长的溶解性甲烷单加氧酶基因为5690bp,部分16S rDNA的序列长度为1280bp。与已发表的甲烷氧化细菌中甲烷单加氧酶进行了比较,结果表明MMOX组份中氨基酸序列的同一性为78%到99%,基因序列的同一性为71%到97%,6个组份中orfY片段的同一性相对较低。MMOX氨基酸序列的多序列联配表明,MMOX序列具有高度保守性,特别是在双核铁中心区域。16S rDNA进化分析显示Methylomonas sp.GYJ3与γ蛋白细菌是相关联的,基于MMOX氨基酸序列的进化分析证明,与Methylomonas sp.GYJ3最近似的菌株是Ⅰ型甲烷氧化细菌Methylomonas sp.KSWⅢ。综合分析表明,菌株GYJ3属于Ⅰ型甲烷氧化细菌Methylomonas sp.属。这个结果为Ⅰ型甲烷氧化细菌也能表达溶解性甲烷单加氧酶提供了新的证据。羟基化酶的理论等电点是6.28,理论分子量为248874.41Da。 相似文献
11.
Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker-exchange mutagenesis 总被引:1,自引:0,他引:1
Abstract Methylosinus trichosporium OB3b synthesizes a soluble cytoplasmic methane monooxygenase when grown in copper-depleted medium and a membrane-bound particulate methane monooxygenase under copper-replete conditions. The genes encoding the hydroxylase component of soluble methane monooxygenase, carried on a plasmid in Escherichia coli , were insertionally inactivated using a kanamycin cassette and transferred back into M. trichosporium by conjugation. Marker-exchange mutagenesis, via a double homologous recombination event, yielded a soluble methane monooxygenase-negative mutant which grew only on methane using the particulate methane monooxygenase during copper-replete growth conditions, thus proving that the two methane oxidation systems in this methanotroph are genetically distinct. 相似文献
12.
Jia-Ying Xin Ying-Xin Zhang Jing Dong Qi-Qiong Zhou Yan Wang Xiao-Dan Zhang Chun-Gu Xia 《World journal of microbiology & biotechnology》2010,26(4):701-708
Methanotrophs containing methane monooxygenase (MMO) can catalyze the epoxidation of propene to epoxypropane. Methane cannot support dense biomass growth due to its low aqueous solubility. Low growth rate is important limiting factor for the application of methanotrophs. Methanol can act as growth substrate, but direct addition of methanol is toxic to most methanotrophs. The MMO activity during growth on methanol is also uncertain. In this paper, methanol-adapted Methylosinus trichosporium IMV 3011 was successfully cultivated at high cell densities using methanol as sole carbon source. A biomass density of 1.68 g dry weight cell l?1 was achieved and cells contained almost 80% of the MMO activity measured for cells grown with methane. It has been found that methanol can also act as the electron-donating substrate to regenerate the NADH and drive epoxypropane synthesis. The effect of methanol supply on the epoxidation capacity of Methylosinus trichosporium IMV3011 was studied in batch reactor. 0.016% methanol concentration was found to give the highest propene epoxidation capacity. 相似文献
13.
Methanol was produced from methane with a high conversion rate using a high cell density process with Methylosinus trichosporium OB3b in the presence of a high concentration of phosphate buffer. More than 1.1 g/L methanol accumulated in the reaction media under optimized reaction conditions (17 g dry cell/L, 400 mmol/L phosphate, and 10 mmol/L MgCl2) in the presence of 20 mmol/L sodium formate. The conversion rate of methane was over 60%. About 0.95 g/L methanol was produced when the biotransformation was carried out in a membrane aerated reactor into which methane and oxygen were introduced via two separate dense silicone tubing. Our results provide an efficient method and a promising process for high-rate conversion of methane to methanol. 相似文献
14.
D. L. N. Cardy V. Laidler G. P. C. Salmond J. C. Murrell 《Archives of microbiology》1991,156(6):477-483
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. The soluble MMO enzyme complex from Methylosinus trichosporium also oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study we have used heterologous DNA probes from the type X methanotroph Methylococcus capsulatus (Bath) to isolate mmo genes from the type II methanotroph M. trichosporium. We report here that the gene encoding the reductase component, Protein C of MMO, lies adjacent to the genes encoding the other components of soluble MMO in M. trichosporium but is separated by an open reading frame of unknown function, orfY. The complete nucleotide sequence of these genes is presented. Sequence analysis of mmoC indicates that the N-terminus of Protein C has significant homology with 2Fe2S ferredoxins from a wide range of organisms.Abbreviations MMO
methane monooxygenase 相似文献
15.
Lijin Shu Y. Liu J. D. Lipscomb L. Que Jr. 《Journal of biological inorganic chemistry》1996,1(4):297-304
The conversion from methane to methanol is catalyzed by methane monooxygenase (MMO) in methanotrophic bacteria. Earlier work on the crystal structures of the MMO hydroxylase component (MMOH) from Methylococcus capsulatus (Bath) at 4??°C and –160??°C has revealed two different core arrangements for the diiron active site. To ascertain the generality of these results, we have now carried out the first structural characterization on MMOH from Methylosinus trichosporium OB3b. Our X-ray absorption spectroscopic (XAS) analysis suggests the presence of two Fe-Fe distances of about 3?Å and 3.4?Å, which are proposed to reflect two populations of MMOH molecules with either a bis(μ-hydroxo)(μ-carboxylato)- or a (μ-hydroxo)(μ-carboxylato)diiron(III) core structure, respectively. The observation of these two different core structures, together with the crystallographic results of the MMOH from Methylococcus capsulatus (Bath), suggests the presence of an equilibrium that may reflect a core flexibility that is required to accommodate the various intermediates in the catalytic cycle of the enzyme. XAS studies on the binding of component B (MMOB) to the hydroxylase component show that MMOB does not perturb either this equilibrium or the gross structure of the oxidized diiron site in MMOH. 相似文献
16.
The redox properties of the copper in particulate methane monooxygenase from Methylosinus trichosporium OB3b were investigated. The ESR spectrum of the pMMO-containing membranes from M. trichosporium OB3b indicated a typical type II copper (II) signal (g = 2.24, A = 18.4 mT, g = 2.06, 2= 0.84). By anaerobic addition of excess amounts of duroquinol, an optimum reductant of pMMO, the ESR spectra indicated that the copper cluster in membranes was reduced and successively oxidized by dioxygen, a substrate of pMMO. The result suggests that the copper is the active site of pMMO or an electron carrier. During the titration, the intensity of the type II copper signal decreased with decreasing potential and the multiple hyperfine structure at g = 2.06 appeared clearly. Although the copper signal did not change by treatment of the EDTA-treated membranes with duroquinol and dioxygen, the copper signal intensity decreased with decreasing potential in the redox titration. These results suggest that some redox mediators play a role as an electron carrier between the active site and a reductant, and the presence of at least two types of copper sites in pMMO- containing membranes. On the basis of the ESR spectra of the EDTA-treated membranes and the as-isolated membranes, it is concluded that one type of the copper sites functions as the active site of pMMO (A-site), and the other type of copper sites plays a role as an electron carrier (E-site) 相似文献
17.
Whole-cell assays were used to measure the effect of dichloromethane and trichloroethylene on methane oxidation by Methylosinus trichosporium OB3b synthesizing the membrane-associated or particulate methane monooxygenase (pMMO). For M. trichosporium OB3b grown with 20 μM copper, no inhibition of methane oxidation was observed in the presence of either dichloromethane or
trichloroethylene. If 20 mM formate was added to the reaction vials, however, methane oxidation rates increased and inhibition
of methane oxidation was observed in the presence of dichloromethane and trichloroethylene. In the presence of formate, dichloromethane
acted as a competitive inhibitor, while trichloroethylene acted as a noncompetitive inhibitor. The finding of noncompetitive
inhibition by trichloroethylene was further examined by measuring the inhibition constants K
iE and K
iES. These constants suggest that trichloroethylene competes with methane at some sites, although it can bind to others if methane
is already bound. Whole-cell oxygen uptake experiments for active and acetylene-treated cells also showed that provision of
formate could stimulate both methane and trichloroethylene oxidation and that trichloroethylene did not affect formate dehydrogenase
activity. The finding that different chlorinated hydrocarbons caused different inhibition patterns can be explained by either
multiple substrate binding sites existing in pMMO or multiple forms of pMMO with different activities. The whole-cell analysis
performed here cannot distinguish between these models, and further work should be done on obtaining active preparations of
the purified pMMO.
Received: 3 November 1998 / Accepted: 1 March 1999 相似文献
18.
The effect of iron ions on particulate methane monooxygenase was studied by using the EDTA-treated membranes from Methylosinus trichosporium OB3b. When the membrane was treated with EDTA the activity remained 82% of the as-isolated membranes, and the activity of the EDTA-treated membranes was strongly influenced by the addition of metal ions. Among the metal ions, ferric, ferrous and cupric ions stimulated the activity, indicating those ions were needed for the activity. When propargylamine was added, pMMO activity decreased and also the iron ESR signal decreased. As the ESR signal involves the ferrous nitrosyl complex in EDTA-treated membranes, the active site of pMMO may contain a mononuclear non-heme iron. 相似文献
19.
The DEAE-cellulose linked cells of Methylosinus trichosporium displaying high specific methane mono-oxygenase activity (66 mumol methane oxidized/h mg cells) were used for methanol biosynthesis from biogas derived methane in a batch and a continuous cell reactor. The optimum cell-to-carrier ratio was determined to be 0.5 g cells/g dry weight cellulose. Batch experiments indicated that 100 mM phosphate ion concentration was necessary to inhibit further oxidation of methanol; excess oxygen supply favored methanol accumulation with an increase in methane conversion efficiency to 27%. A pulse of 40 mM sodium formate at the end of 6 h resulted in restoration of methanol accumulation by regenerating NADH(2) required for the sustained activity of methane mono-oxygenase. Maximum methanol level of 50 mumol/mg cells was obtained in the batch reactor. In a standard 50-mL ultrafiltration continuous reactor, the covalently linked cells produced methanol at a continuous rate of 100 mumol/h for the first 10 h, after which the methanol accumulation rate fell low due to the depletion of NADH(2). The methanol accumulation could be stimulated by supplying sodium formate (40 mM) in either 20 or 100 mM phosphate buffer. Maximum methanol accumulation rate of 267 mumol/h was obtained when 20 mM formate was supplied in the feed stream containing 100 mM phosphate ions, and this level of biosynthesis was maintained for over 72 h. The stoichiometric balance made at various points of formate addition indicated that the molar amount of methanol generated at steady state is dependent on the equimolar addition of sodium formate to the feed. The half-life t(1/2) and thermal denaturation rate constant K(d) were computed to be 108 h and 6.42 x 10(-3) h(-1), respectively. 相似文献
20.
Xin JY Cui JR Hu XX Li SB Xia CG Zhu LM Wang YQ 《Biochemical and biophysical research communications》2002,295(1):182-186
Particulate methane monooxygenase (pMMO) has been exfoliated and isolated from membranes of the Methylosinus trichosporium IMV 3011. It appears that the stability of pMMO in the exfoliation process is increased with increasing copper concentration in the growth medium, but extensive intracytoplasmic membrane formed under higher copper concentration may inhibit the exfoliation of active pMMO from membrane. The highest total activity of purified pMMO is obtained with an initial concentration of 6 microM Cu in the growth medium. The purified MMO contains only copper and does not utilize NADH as electron donor. Treatment of purified pMMO with EDTA resulted in little change in copper level, suggesting that the copper in the pMMO is tightly bound with pMMO. 相似文献