首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The applied method to measure the filtrability of red blood cells is accurate enough for the study of the effects of the conditions of storage on their deformability. In this work the standard deviation of the method, the mean biological deviation of the deformability of human red blood cells and their deformability in the course of storage in the ACD-AG-medium have been investigated. Considerable loss of deformability occurs towards the end of storage time of the cells, which is not reversible be restitution of ATP alone. The applicability of this method as a simple test of the vitatity of preserved erythrocytes if to be tested.  相似文献   

2.
Although many diseases of the heart and circulatory system have been linked with insufficient deformability and increased aggregability of red blood cells, there are only a few drugs which can modulate these biological functions of erythrocytes. Here, we show evidences that iloprost, stable prostacyclin analogue and SIN-1, active metabolite of molsidomine which spontaneously releases NO, may be sufficient pharmacological tools for modulating red blood cell deformability and aggregability. Deformability of red blood cells was measured by shear stress laser diffractometer (Rheodyn SSD) and expressed in percent of red blood cell deformability index (DI). MA-1 (Myrenne) erythrocyte aggregometer was used for photometric measurements of aggregability in arbitrary units (MEA) of mean extent of aggregation. Experiments were carried out on rats ex vivo and in vitro using whole rat blood or isolated erythrocytes. Ex vivo SIN-1 (infusion 2 mg/kg/min i.v.) and iloprost (bolus injection 10 microg/kg i.v.) significantly improved erythrocyte deformability and aggregability at 5-15 min after administration. L-NAME (10 mg/kg i.v.)- inhibitor of nitric oxide synthase, and aspirin (1 mg/kg i.v.) caused worsening of deformability of erythrocytes in experiments ex vivo. Studies in vitro also revealed improvement of red blood cell deformability and aggregability by SIN-1 (3 microM, 15 min incubation at 22 degrees C) or iloprost (1 microM, 15 min incubation at 22 degrees C) and this phenomenon appeared not only in whole blood but also in isolated red cells. It is concluded that NO- and prostacyclin-induced improvement of red blood cell deformability and aggregability results from direct action of these compounds on erythrocytes. NO-donors and iloprost could be useful in the treatment of disorders of blood fluidity.  相似文献   

3.
A new system has been developed for determining the deformability of individual red blood cells (RBCs), simulating the passage of RBCs in capillaries. The kernel of this system was the micropore array filter with an accurately defined pattern made by semiconductor microprocessing techniques. Individual microscopic RBC images were processed in parallel through a microcomputer and its interfacing circuit. An experiment with a normal RBC from a human donor demonstrated that it could pass the circular pore filter with a diameter as small as 1.0 μm at 2 cm H2O pressure difference. Deformability of RBCs treated with diamide or acetylphenylhidralazine was also measured, showing that the system was sufficiently sensitive to detect the deformability loss due to membrane damage or to polymerization of the cytoplasma.  相似文献   

4.
Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high‐affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes.  相似文献   

5.
Red blood cell deformability has been studied by the initial filtration flow rate as a function of temperature. The well-known transition at 49-50 degrees C (probably due to spectrin denaturation) is shown. Another transition is demonstrated around 18 degrees C (the cell becomes stiffer below this temperature range). The erythrocyte membranes prepared by a mild dialysis technique have the same deformability as intact erythrocytes at room temperature; they also show the same low-temperature transition. No such transition has been found for hemoglobin solutions of viscosity 30 g X dl-1. It is interesting to compare these results with those obtained by other methods which measure the properties of natural or artificial lipid membranes and which also demonstrate a thermal transition at 15-20 degrees C. Therefore, the deformability of intact normal erythrocytes seems to depend mainly on the rheological properties of the membrane.  相似文献   

6.
The salmon shark has been ranked as the most endothermic lamnid shark based upon geographical range, extent of slow twitch muscle, supra-hepatic rete size, and limited temperature measurements, yet its anatomy has remained largely undescribed, and measurements of brain or eye temperatures have not been reported. In this study, four specimens are examined to determine if the morphological requirements for warming the brain and eyes are present. A well-developed arterial orbital rete lies within a venous sinus on both sides of the cranium. Cool, oxygenated blood from the gills can pass through the vessels of this exchanger before reaching the brain or eyes. Since venous blood in the sinus flows opposite the arterial blood, counter-current heat exchange can occur. A vein originating in the red swimming muscle likely contributes to the warmth of the venous sinus by supplying blood directly from the warmest region of the shark. Before collecting in the orbital sinus, this red muscle vein bathes the brain in warm blood. These morphological data suggest the salmon shark has a significant capacity to warm the brain and eyes.  相似文献   

7.
The effects of Prostaglandin E1 and Prostaglandin E2 on the deformability of the human red blood cell have been studied using the glass micropipette method. In the range of concentrations 10?13 to 10?5 M, neither PGE1 nor PGE2 alters the red cell deformability.  相似文献   

8.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

9.
E Evans  N Mohandas 《Blood cells》1986,12(1):43-56
The present day rheological approximation, which has been used successfully to quantitate the deformability properties of red cells, is based on the view that the cell has a liquid interior encapsulated by a viscoelastic solid membrane shell. A review of historical developments in this field shows that determination of intrinsic red cell membrane properties has not come from simple mathematical analysis of experiments. On the contrary, considerable insight has been required to bring together physical and biological methods to rationalize the unique deformability characteristics of the red blood cell. Key developments at the Institut de Pathologie Cellulaire (IPC) in the early 1970s played a role in our improved understanding of red cell rheology. In this article, we describe the material concepts of the red cell membrane held before 1970, discuss the seminal developments at Bicetre, and, finally, outline the contemporary view of red cell deformability.  相似文献   

10.
Whole blood is a non-Newtonian fluid, which means that its viscosity depends on shear rate. At low shear, blood cells aggregate, which induces a sharp increase in viscosity, whereas at higher shear blood cells disaggregate, deform and align in the direction of flow. Other important determinants of blood viscosity are the haematocrit, the presence of macro-molecules in the medium, temperature and, especially at high shear, the deformability of red blood cells. At the sites of severe atherosclerotic obstructions or at vasospastic locations, when change of vessel diameter is limited, blood viscosity contributes to stenotic resistance thereby jeopardising tissue perfusion. However, blood viscosity plays its most important role in the microcirculation where it contributes significantly to peripheral resistance and may cause sludging in the postcapillary venules. Apart from the direct haemodynamic significance, an increase in blood viscosity at low shear by red blood cell aggregation is also associated with increased thrombotic risk, as has been demonstrated in atrial fibrillation. Furthermore, as increased red blood cell aggregation is a reflection of inflammation, hyperviscosity has been shown to be a marker of inflammatory activity. Thus, because of its potential role in haemodynamics, thrombosis and inflammation, determination of whole blood viscosity could provide useful information for diagnostics and therapy of (cardio)vascular disease.  相似文献   

11.
12.
Summary— Morphological study of red blood cell phagocytosis by Entamoeba histolytica-like (Laredo strain) has shown that this amoeba is able to ingest by two distinct mechanisms. One is classical phagocytosis and the other is by suction or microphagocytosis. Rigidification of red blood cells by treatment with glutaraldehyde shows that there is a correlation between the deformability of the ingested cell and the type of phagocytosis observed. Indeed, as the red cells become more rigid, less microphagocytosis is observed. To demonstrate that this shift in phagocytic mechanisms is not induced by the modification of a surface receptor by the glutaraldehyde treatment, the amoebas were fed with erythrocyte ghosts. Since these have lost most of their hemoglobin content, they are less rigid than the intact erythrocytes. The ghosts, even after glutaraldehyde treatment, are always ingested by microphagocytosis. These results have therefore led us to conclude that the type of erythrocyte phagocytosis used by E histolytica-like (Laredo strain) is determined by the deformability of the targetted red blood cells.  相似文献   

13.
Sockeye salmon (Oncorhynchus nerka) is one of the most iconic and valued species of Pacific salmon. Various studies have examined the potential effects of future climate change on sockeye salmon, but there is currently no synthesis of the documented effects of climate on this species. In this paper, we present a synthesis of 80 peer-reviewed publications in the English language evaluating the effects of climate on sockeye salmon growth, phenology, and survival. The great majority of studies examined have been conducted with stocks from North America (90?% of studies). Survival (55?%) has been the most frequently studied aspect of the sockeye salmon life history in relation to climate, followed by growth (45?%) and phenology (30?%), with temperature (83.4?%) being the climate-related variable most frequently examined in such studies. Across life stages, the effects of climate-related variables have been most frequently studied on fry (36.3?%) and least studied on spawners (7.5?%). Our synthesis revealed that associations between temperature and growth, phenology, or survival have been uncovered for all the life stages of sockeye salmon, whereas relationships with other climate-related variables have been sparse. There is substantial evidence that sockeye salmon are influenced by thermal conditions experienced at regional, rather than ocean- or continental-wide scales, and that responses to temperature vary among and within stocks. The mechanisms by which climate affect sockeye salmon during the early stages in freshwater and while at sea are still poorly understood and warrant future research. More research on the effects of non-temperature, climate-related variables (e.g. stream flow, ocean pH), inter-generational and carry-over effects of climate, interaction between climate and non-climate stressors, and adaptation to climate change are also needed. Such information will be critical to advance our understanding of how sockeye salmon stocks will fare with future climate change.  相似文献   

14.
Worldwide, humans have tremendously altered freshwater ecosystems and arguably, construction of dams has had the greatest effect. Maintaining natural ecological processes and developing mitigation strategies that will maintain species while retaining dam benefits is challenging. In the Columbia River, USA, over the last 30 years more than US$7 billion has been spent on efforts to save historically large runs of salmon. These efforts have included improving passage conditions at dams through construction of efficient fish ladders for adult salmon, effective fish passage facilities for downstream migrating juvenile salmon, voluntarily spilling water to decrease the number of downstream migrants that pass through turbines, modifying dam operations to provide more constant flow and providing additional flow from storage reservoirs to create more natural flow through areas inundated by dams. Construction of hatcheries to offset losses in habitat for wild fish has also occurred. Further, for salmon from the Snake River, the largest tributary to the Columbia River, a large percent of juvenile salmon smolts are collected at upstream dams and transported in barges to the lower river to avoid passage through dams, turbines, and reservoirs. Experiences in the Columbia River suggest that the sum of all of these actions may keep salmon stocks from going extinct, but the technological fixes will not likely provide complete mitigation for altered freshwater ecosystems. Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood Control and Water Abstraction: Implications for Fish and Fisheries  相似文献   

15.
Reductions in red blood cell membrane deformability (RBC(D)) may perturb microcirculatory blood flow and impair tissue O(2)-availability. We investigated the effect of assay temperature on the distribution of RBC(D) in endotoxin (LPS) incubated and control RBCs. Fresh blood from healthy rats was incubated with and without the presence of LPS for 6 hrs. An index of red blood cell membrane deformability, delta, was measured via the micropipette aspiration technique at 25 degrees C and 37 degrees C at 0, 2 and 6 hrs of incubation. The ATP content of RBC was measured by the luciferin-luciferase technique. At 25 degrees C, LPS caused a significant decrease in mean delta after 2 and 6 hours incubation compared to controls (-10.0%, p=0.03 and -24.0%, p=0.03, respectively) characterized by a left shift in the distribution (skewness: -1.4). However, at 37 degrees C a significant decrease in delta was only detected after 6 hrs of LPS incubation (-13.8%, p=0.01, compared to -5.1%, p=0.7 at 2 hours) and lacked the left shifted distribution (skewness: 0.2). No significant difference in ATP content of RBCs was observed between groups. We have shown that LPS incubation results in a significant decrease in RBC(D) and that room temperature measurement of physical membrane properties may exaggerate the differences between normal and perturbed RBCs.  相似文献   

16.
The functional state of erythrocytes from hen during their conservation with a preserving solution for 24 days at 4 degrees C, has been estimated by studying some biochemical and hemorheological parameters. Results show an initial phase in the preservation period (4-5 days) in which red blood cells maintain their values at levels similar to those at the beginning of the experience, except for osmotic resistance. Furthermore a progressive erythrocyte deformability loss, linked to ATP depletion (with rise in inorganic phosphate levels) as well as a gradually higher rate of hemolysis, were detected.  相似文献   

17.
This paper presents a simple, new approach to the determination of size, shape, surface area, and deformability information for cells, notably red blood cells. The results are obtained by combining experimental measurements from resistive pulse spectroscopy (an extension of electronic cell-sizing methodology) with theoretical calculations for model cell systems. Assuming constancy of surface area and approximating red cell shapes by both prolate and oblate ellipsoids of revolution, values are determined for cell shape factor and volume under a variety of conditions. For red blood cells under low-stress conditions, shape factor, volume, and surface area results are found to be consistent with those available from the literature, when the oblate model is used. The applicability of this approach for determination of red cell properties under altered conditions is demonstrated by results for cell volume, at varying osmotic pressure and mechanical shear (tensile) stress. By quantitating the change in cell shape with stress, a new numerical scale for measuring cell deformability is also obtained, and data are presented on its variation for red cells at different osmolalities, over the range of 140 to 500 mOsm.  相似文献   

18.
Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.  相似文献   

19.
《Biorheology》1995,32(6):643-653
The effect of temperature on the flow of diluted blood [Hct = 0.21], through 5 μm Nuclepore filters, is described by the Arrhenius equation with an energy of activation of 27.7 kJ/mol. Plasma, diluted with PBS, is almost three times less sensitive to temperature, with an energy of activation of 9.8 kJ/mol, while red cells are of intermediate sensitivity, with an energy of activation of 14.7 kJ/mol. The most sensitive elements to changes in temperature are leukocytes, with energies of activation of 31 kJ/mol and 35 kJ/mol for fast-flowing leukocytes (granulocytes and lymphocytes) and slow-flowing leukocytes (monocytes) respectively. Hence, the major determinants of the decline in filterability of blood through micropore filters are the leukocytes. This effect is compounded when blood is kept for 10 minutes or more at 10° C due to activation of granulocytes, which leads to permanent pore blocking when the affected blood is filtered at room temperature. The combination of increased passage time of leukocytes through peripheral areas at abnormally low temperatures and subsequent activation might influence the flow of blood in non-affected tissues. The effect of temperature on the filterability of red blood cells through 3 μm filters is not described by the Arrhenius equation and the deviations are seen as a gradual change of slope rather than a sharp break between two straight lines. The data are consistent with a gradual shift in rate limiting step away from the entry event into pores, which dominates at low temperature but becomes progressively less important at elevated temperatures. The changing parameter is probably the volume of the red cell, which is less important when flow is measured through 5 μm pores.  相似文献   

20.
通过对LED在生物医学领域的应用分析发现,LED光存在与激光相类似的生物刺激效应。目前弱激光血疗已由血管内照射发展到体表照射、黏膜照射。这为LED光照射体表、黏膜实现血疗提供了良好的预期。为了证明LED光可以代替激光作为净血治疗仪的光源,本实验设计了激光与LED光对自由基损伤模型红细胞变形性作用的对比实验,结果表明,两种光照方法均对红细胞变形性有改善作用。LED相比激光安全性更好、成本更加低廉,特别适合往家用小型化方向发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号