首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stiles  F. Gary  Rosselli  Loreta 《Plant Ecology》1993,107(1):57-73
Plant Ecology - The family Melastomataceae shows two major modes of dispersal for its small seeds: wind for capsular fruits, and birds for berry-type fruits. Distribution patterns of these two...  相似文献   

2.
寄生虫及其宿主协同进化的研究进展   总被引:7,自引:0,他引:7  
刘汉生  陈智兵  胡朝晖  林小涛 《生态科学》2003,22(3):261-264,208
本文对寄生虫及其宿主协同进化的研究进行了回顾,将其发展分为三个阶段:1.寄生虫-宿主协同进化的初步认识;2.协同进化模式及其内在机制的探索;3.协同进化机制研究方法的发展。目前的研究主要集中于协同进化生物学意义的进一步深入探讨。同时,对协同进化的有关概念、方法和本学科的发展进行了简单阐述和讨论。  相似文献   

3.
Large vertebrates are important elements of mutualistic interactions and provide positive impacts on plant population and community dynamics. Despite the increasing interest on vertebrate frugivory we are still not able to disentangle the real contribution of seed dispersal to Neotropical forest functioning. Consuming fruits does not imply effective seed dispersal and many variables, such as seed size and animal diet, may influence the outcome of plant-animal interactions. Here, we performed a comprehensive literature search on seed dispersal by Neotropical vertebrates (with a focus on primates) to closely approach their role as seed dispersers, hypothesizing frugivory degree and seed size as main drivers of fruit handling behavior and diversity of dispersed seeds. We found that the great majority of seeds manipulated by Neotropical primates, with exception to the seed predators pitheciins, were swallowed and passed intact through their gut. Larger seeds (>12 mm) tended of being ingested exclusively by primates and other large vertebrates, such as tapirs and peccaries. Furthermore, primate feeding guild had a great influence on the richness and sizes of seeds dispersed, as primarily frugivores dispersed more species and had higher probabilities of ingesting larger seeds when compared to other feeding guilds. Organizing available knowledge and filling the main knowledge gaps allowed us to validate common sense assumptions and ultimately draw new conclusions about the role played by primates together with other major frugivores in Neotropical forests.  相似文献   

4.
Wildfires are an increasing threat to tropical rainforests, yet little is known about their effects on fruit production and forest wildlife. We examined the effects of both single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian terra firme forest for 3 years following a large fire event. The estimated mortality of 42 and 74% of stems ≥10 cm in once- and twice-burnt forest led to a substantial loss of fruiting tree basal area (29 and 62% were lost in once- and twice-burnt forest, respectively) and crown coverage of fruiting woody lianas (89 and 97% were lost in once- and twice-burnt forest, respectively). Some important tree families producing fleshy fruits were less abundant than expected in once- and twice-burnt forest, suggesting that tree mortality was non-random in terms of species composition. Asynchronous fruit production was affected, and burnt forest transects sustained a much lower fruiting basal area, and fewer fruiting species during the dry season period of fruit scarcity. The number of fruiting trees in once- and twice-burnt forest was higher than the number predicted from actual levels of tree mortality recorded in each fire disturbance treatment, suggesting some surviving trees which may have benefited from higher irradiance levels and lower competition for resources. Many large frugivores and other vertebrate species declined in response to single fires, and most primary forest specialists were extirpated from twice-burnt forest, which sustained a higher number of species associated with second growth and other disturbed habitats.  相似文献   

5.
Adaptive trade-offs underlie the specialisation that permits habitat partitioning in species rich plant communities. We investigated the influence of the trade-offs that determine differences in growth and survival among six species of neotropical pioneer trees in gaps in semideciduous forest in Panama. Seedlings of Miconia argentea, Cecropia insignis, Luehea seemannii, Trema micrantha, Ochroma pyramidale and Croton bilbergianus were planted into artificial small (25 m2), medium (64 m2) and large (225 m2) gaps in secondary forest in the Barro Colorado Nature Monument. Trema and Ochroma suffered 50% mortality across all gap sizes, while Cecropia had high mortality only during the dry season and in the small gaps, and Miconia and Croton suffered low to zero mortality across all environments. The highest growth rates in large gaps were attained by Cecropia seedlings and in the smaller gaps by Miconia seedlings, although there were indications that Trema and Ochroma required gaps that were larger than any used in this study. Variation in growth and mortality could not be attributed to differences in foliar herbivore damage. Instead, there was strong evidence of a trade-off between maximum growth in the wet season and the ability to survive seasonal drought, particularly in small gaps. We conclude that variation in allocation in response to multiple limiting resources may be as important as allocation to growth and defence in determining the habitat preferences of neotropical pioneers.  相似文献   

6.
Summary I examined the digestive physiology of two avian frugivores, the golden-collared manakin, Manacus vitellinus, and the red-capped manakin, Pipra mentalis, to discover how these birds extract energy from fruit. Using 14 species of fruit in the natural diet of manakins, I examined the assimilation of nutrients from fruit pulp, fruit passage rates, seed passage rates, and gut morphology. Fruits in the manakins' diets had high water content (average, 84%) and low nutrient concentrations (3 kJ/g wet pulp; 17 kJ/g dry pulp; 1% nitrogen/g dry pulp). Manacus and Pipra did not differ in the average assimilation of energy in fruit pulp (63%), although it varied from 37 to 84% depending on fruit species. Assimilation of total nonstructural carbohydrates in the fruit pulp was very high (86–98%) in both species. Gut evacuation was rapid; maximum transit time of a labeled fruit was 30 min. Seeds passed through the gut faster (Manacus: 15 min; Pipra: 12 min) than the accompanying fruit epidermis (both spp: 22 min). Manakins regurgitated large seeds (>5 mm diameter) in 7 to 9 min. Rapid gut passage time, high assimilation of nonstructural carbohydrates, and the selective regurgitation and rapid elimination of bulky seeds enable manakins to process a large volume of food per day. By increasing rates of fruit intake and gut passage, manakins can effectively increase total nutrient uptake. These adaptations of manakins are requisite for harvesting sufficient nutrients from fruit, due to its low nutrient density, high water content, and bulky seeds.  相似文献   

7.
The efficiency of food exploitation correlates positively with the extent of dietary specialization. Neotropical nectar-feeding bats (Glossophaginae) have one of the most specialized diets among mammals, as floral nectar constitutes a sugar-rich and highly digestible but protein and fiber depleted food source. However, dietary constraints, such as a temporary scarcity of nectar, or protein demands may sometimes require the uptake of alternative food items. We investigated the influence of a diet switch from nectar to fruit on intestinal morphology, body mass, and energy budget in the nectar-feeding bat Glossophaga commissarisi and quantified feeding efficiency. We hypothesized that these nectar specialists depend on a constant supply of nectar, if they were lacking the ability for morphological and physiological plasticity in response to a fiber-rich diet. Although capable of harvesting infructescences of Piper hispidum, G. commissarisi was less efficient in extracting energy from fruits (48% digestive efficiency of total fruit energy content) than from nectar (c. 99% digestive efficiency). The intestinal morphology and organ masses did not change after bats were switched from nectar to fruits. Captive bats exhibited lower daily energy expenditures and flight activity when feeding on fruits than during nectarivory. Possibly, this may have been a deliberate regulation to balance reduced feeding efficiency, or simply the consequence of extended digestive pauses. The low digestibility of Piper, in combination with slow digestion and the bats’ inability for morphological and physiological plasticity may cause nectar-feeders to reduce their maximum energy expenditure when feeding on fruits. We argue that although fruits may substitute for nectar, they may cause restricted maximum energy assimilation compared with nectar.  相似文献   

8.
Spatial variation in biodiversity is one of the key pieces of information for the delimitation and prioritisation of protected areas. This information is especially important when the protected area includes different climatic and habitat conditions and communities, such as those along elevational gradients. Here we test whether the megadiverse communities of spiders along an elevational gradient change according to two diversity models – a monotonic decrease or a hump-shaped pattern in species richness. We also measure compositional variation along and within elevations, and test the role of the preference of microhabitat (vegetation strata) and the functional (guild) structure of species in the changes. We sampled multiple spider communities using standardised and optimised sampling in three forest types, each at a different elevation along a climatic gradient. The elevational transects were at increasing horizontal distances (between 0.1 and 175 km) in the Udzungwa Mountains, Eastern Arc Mountains, Tanzania. The number of species was similar between plots and forest types, and therefore the pattern did not match either diversity model. However, species composition changed significantly with a gradual change along elevations. Although the number of species per microhabitat and guild also remained similar across elevations, the number of individuals varied, e.g. at higher elevations low canopy vegetation was inhabited by more spiders, and the spiders belonging to guilds that typically use this microhabitat were more abundant. Our findings reflex the complex effects of habitat-microhabitat interactions on spider communities at the individual, species and guild levels. If we aim to understand and conserve some of the most diverse communities in the world, researchers and managers may need to place more attention to small scale and microhabitat characteristics upon which communities depend.  相似文献   

9.
Metapopulation dynamics can strongly affect the ecological and evolutionary processes involved in host–parasite interactions. Here, I analyse a deterministic host–parasite coevolutionary model and derive analytic approximations for the level of local adaptation as a function of (1) host migration rate, (2) parasite migration rate, (3) parasite specificity and (4) parasite virulence. This analysis confirms the results of previous simulation studies: the difference between host and parasite migration rates may explain the level of local adaptation of both species. I also show that both higher specificity and higher virulence generally lead to higher levels of local adaptation of the species which is already ahead in the coevolutionary arms race. The present analysis also provides a simple geometric interpretation for local adaptation which captures the complexity of the temporal dynamics of host–parasite coevolution.  相似文献   

10.
本研究利用28SrDNAC1-D2区序列分析采自鲤科鱼类中6亚科宿主和寄生在花鲈、梅花鲈上的共17种指环虫的系统发育关系。同时,通过比较宿主鲤科鱼类与指环虫的系统发育树,检验指环虫与其宿主是否存在协同进化关系。结果表明:17种指环虫形成5个进化支(Clade),其中寄生在团头鲂(亚科)和鲢、鳙(鲢亚科)上的6种指环虫聚为一支(Clade1),而它们的宿主鱼类在系统发育分析中也表现为近缘关系;寄生在鲮鱼(野鲮亚科)上的D.quanfami(Clade5)位于系统树最基部,鲫鱼和鲤鱼(鲤亚科)的寄生指环虫处在系统树的次基部位置,而鲤亚科与野鲮亚科组成的姐妹群在宿主系统树上同样处在基部位置,寄生虫和宿主在进化上较为原始的地位得到了很好地相互印证。因而,本研究首次利用分子系统学手段分析指环虫属远缘物种间的系统关系,揭示了指环虫属与宿主鱼类之间存在协同进化关系。另外,本研究首次发现,野鲮亚科鱼类也可能是指环虫类的早期宿主,这与先前认为鲤亚科鱼类为指环虫类的祖先宿主的推测有所不同。  相似文献   

11.
We studied the relationship between the removal rate and the spatiotemporal availability of ripe fruits of the tropical deciduous shrub Erythroxylum havanense in western Mexico. We also evaluated the effects of dispersal on seed survival during the first stages of establishment. Fast and early dispersal should be favored in E. havanense, since propagules have more time to grow and accumulate resources before the beginning of the severe dry season. In general, high rates of fruit removal imply faster and earlier dispersal. Thus, plants producing large crops should benefit from high removal rates, which will increase the probability of successful establishment by their progeny. To characterize both individual and population fruiting patterns, we made daily counts of fruits on 51 plants arranged in six clumps of different sizes. The daily number of fruits removed per plant was higher for plants with larger initial crop sizes and larger numbers of ripe fruits on a given day, but decreased as clump size increased. Additionally, we monitored postdispersal survival and germination in an experiment manipulating seed density, distance from adult plants, and seed predation. Early establishment was independent of density or distance, and vertebrate seed predation was the main agent of seed mortality. Our results indicate that the critical variable with respect to fruit removal is the number of fruits a plant produces, large plants having higher dispersal rates. Large plants are also more likely to have more seeds escaping postdispersal seed predation.  相似文献   

12.
Coevolution has long been thought to drive the exaggeration of traits, promote major evolutionary transitions such as the evolution of sexual reproduction and influence epidemiological dynamics. Despite coevolution’s long suspected importance, we have yet to develop a quantitative understanding of its strength and prevalence because we lack generally applicable statistical methods that yield numerical estimates for coevolution’s strength and significance in the wild. Here, we develop a novel method that derives maximum likelihood estimates for the strength of direct pairwise coevolution by coupling a well‐established coevolutionary model to spatially structured phenotypic data. Applying our method to two well‐studied interactions reveals evidence for coevolution in both systems. Broad application of this approach has the potential to further resolve long‐standing evolutionary debates such as the role species interactions play in the evolution of sexual reproduction and the organisation of ecological communities.  相似文献   

13.
The impact of coevolutionary interaction between species on adaptive radiation processes is analysed with reference to pollination biology case studies. Occasional colonization of archipelagos can bring together coevolving partners and cause coradiation of the colonizing species, e.g. the drepanidids and the lobelioids on Hawaii. Permanent reciprocal selective pressure between pairs of coevolving species can lead to a coevolutionary race and rapid evolutionary change. This is exemplified by spurred flowers and long-tongued flower-visitors. The geographic patterning of diffuse coevolution systems can lead to dramatic changes in species interactions. In different populations, interaction between pollinating and seed-parasitizing Greya moths and their host plants varies from mutualism to commensalism and antagonism, depending on the presence of copollinators. Asymmetrical coevolution between angiosperms and oligolectic flower-visitors may facilitate rapid reproductive isolation of populations following a food-plant switch, if the oligoleges use their specific food plants as the rendezvous sites. Diffuse coevolution between angiosperm species and pollinating insects may cause frequent convergent evolution of floral traits such as nectar reward instead of pollen reward, floral guides, zygomorphic flowers, or mimicry of pollen signals, since the multiple plant species experience similar selective pressures via the coevolving partners. Patterns of angiosperm adaptive radiation are highlighted in the context of coevolution with pollinators.  相似文献   

14.
Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.  相似文献   

15.
We model direct fitness benefits of genetic mosaicism for a long-lived tree in coevolution with a short-lived herbivore to test four hypotheses: that mosaicism reduces selection on the herbivore for resistance to plant defenses; that module-level selection allows the individual tree to adapt to its herbivore; and that this benefits the tree population, increasing average tree fitness and reducing local adaptation of the herbivore. We show that: mosaicism does not sufficiently reduce selection for resistance in the herbivore to benefit the tree; that individual trees do benefit from module-level selection when somatic mutation introduces new defenses; and that mosaicism does reduce local adaptation in the herbivore, which increases average tree fitness. These results are robust to varying genetic assumptions of dominance and the somatic mutation rate, but only hold for sufficiently long-lived trees with relatively strong selection. We also show that a mixed reproductive strategy of primarily asexual reproduction interspersed with occasional sexual reproduction is effective in coevolving with the herbivore, as it maintains beneficial allele combinations. Finally, we argue that intraorganismal genetic heterogeneity need not threaten the integrity of the individual and may be adaptive when selection acts concordantly between levels.  相似文献   

16.
Guevara  S.  Laborde  J. 《Plant Ecology》1993,(1):319-338
The tropical rain forest landscape has been transformed to a mosaic composed of patches of crops, secondary vegetation and remnant forest fragments of different shapes and sizes. Isolation of patches and fragments is a critical issue in the maintenance of local species diversity. In this study we focus on the dispersal of propagules by birds to understant the movement of plants between landscape components. Seed deposition and the behavior of frugivorous birds were monitored at four isolated fig trees (Ficus yoponensis and F. aurea) in man-made pastures. Seed deposition was measured by trapping seeds under canopy trees for six months and by direct observation of bird visits to the four trees for one year. Seed deposition densities were 465, 614, 632 and 1097 seeds/m2 accumulated over six months under each of the four trees. We recorded 8268 seeds of 107 species under the trees, among them, 6726 seeds (81%) were of 56 species dispersed by vertebrate frugivores. Seeds of tree species accounted for 26% of the total species. Seventy-three species of birds perched in the observed trees, and 3344 visits were made by 47 species of frugivores. Frugivorous birds occurred in two groups: resident species nesting in the pastures and resident species nesting elsewhere. Propagule exchange between landscape components is clearly influenced by the behavior of these two groups. Structure and dynamics of the landscape depend on plant species availability within the mosaic. This availability is high and suggests possibilities for the management of the local species diversity of tropical rain forests.  相似文献   

17.
Coevolution between different biological entities is considered an important evolutionary mechanism at all levels of biological organization. Here, we provide evidence for coevolution of a yeast killer strain (K) carrying cytoplasmic dsRNA viruses coding for anti‐competitor toxins and an isogenic toxin‐sensitive strain (S) during 500 generations of laboratory propagation. Signatures of coevolution developed at two levels. One of them was coadaptation of K and S. Killing ability of K first increased quickly and was followed by the rapid invasion of toxin‐resistant mutants derived from S, after which killing ability declined. High killing ability was shown to be advantageous when sensitive cells were present but costly when they were absent. Toxin resistance evolved via a two‐step process, presumably involving the fitness‐enhancing loss of one chromosome followed by selection of a recessive resistant mutation on the haploid chromosome. The other level of coevolution occurred between cell and killer virus. By swapping the killer viruses between ancestral and evolved strains, we could demonstrate that changes observed in both host and virus were beneficial only when combined, suggesting that they involved reciprocal changes. Together, our results show that the yeast killer system shows a remarkable potential for rapid multiple‐level coevolution.  相似文献   

18.
Without the top-down effects and the external/physical forcing, a stable coexistence of two phytoplankton species under a single resource is impossible — a result well known from the principle of competitive exclusion. Here I demonstrate by analysis of a mathematical model that such a stable coexistence in a homogeneous media without any external factor would be possible, at least theoretically, provided (i) one of the two species is toxin producing thereby has an allelopathic effect on the other, and (ii) the allelopathic effect exceeds a critical level. The threshold level of allelopathy required for the coexistence has been derived analytically in terms of the parameters associated with the resource competition and the nutrient recycling. That the extra mortality of a competitor driven by allelopathy of a toxic species gives a positive feed back to the algal growth process through the recycling is explained. And that this positive feed back plays a pivotal role in reducing competition pressures and helping species succession in the two-species model is demonstrated. Based on these specific coexistence results, I introduce and explain theoretically the allelopathic effect of a toxic species as a ‘pseudo-mixotrophy’—a mechanism of ‘if you cannot beat them or eat them, just kill them by chemical weapons’. The impact of this mechanism of species succession by pseudo-mixotrophy in the form of alleopathy is discussed in the context of current understanding on straight mixotrophy and resource-species relationship among phytoplankton species.  相似文献   

19.
20.
If specialization influences species presence, then high tropical tree and shrub diversity should correspond with high environmental heterogeneity. Such heterogeneity may be found among different successional communities (i.e., canopy types). We explore species associations in three forest-dominated canopy types, forest, gap, and edge, in Kibale National Park, Uganda and determine environmental, soil and light, differences among canopy types. To determine the strength of differences among forested canopy types, they are also compared to grasslands. Tree and shrub density and species richness using rarefaction analysis were determined based on data from 24 small plots (5 × 5 m) in all four canopy types and 16 large plots (10 × 50 m) in forest and grassland canopy types. Environmental variables were determined along 10 (20 m) transects in the four canopy types. Using analysis of variance and principal components analysis, we demonstrate that forest and gap environments had similar soils, but forest had lower light levels than gap. We also found that grassland and edge were more similar to one another than to forest and gap, but differed in a number of important biotic and abiotic factors controlling soil water availability (e.g., edge had higher root length density of small roots < 2 mm diameter in the top 20 cm than grassland). Using principal components analysis to assess similarities in community composition, we demonstrate that gap and forest had indistinguishable communities and that edge was similar to but distinct from both communities. Complete species turnover only occurred between grassland and the three forested canopy types. Even though overall community composition was similar in the three forested canopy types, in analyses of individual species using randomization tests, many common species were most frequently found in only one canopy type; these patterns held across size classes. These results suggest that despite differences among environments, community composition was similar among forested canopy types, which are likely intergrading into one another. Interestingly, individual species are more frequently found in a single canopy type, indicating species specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号