首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latex beads and wheat germ agglutinin (WGA) were used to examine the movement of membrane components on amoeboid spermatozoa of Caenorhabditis elegans. The behavior of beads attached to the cell revealed continuous, directed movement from the tip of the pseudopod to its base, but no movement on the cell body. Lectin receptors are also cleared from the pseudopod (4). Blocking preexisting lectin receptors with unlabeled WGA followed by pulse-labeling wih fluorescent WGA showed that new lectin receptors are continuously inserted at the tip of the pseudopod. Like latex beads, these new lectin receptors move continuously over the pseudopod surface to the cell body-pseudopod junction where they are probably internalized. Mutants altering the rate of membrane flow, and eliminating its topographical asymmetry, have been identified. Together with the observation that fluorescent phospholipids are cleared from the pseudopod of developing spermatozoa at the same rate as lectin receptors (25), these results show that there is bulk membrane flow over the pseudopod with assembly at the tip and apparent disassembly at the base. There are no vesicles visible at either the pseudopodial tip or base, so these spermatozoa must have a novel mechanism for insertion and uptake of membrane components. This membrane flow could provide the forward propulsion of spermatozoa attached to a substrate by their pseudopods.  相似文献   

2.
In a highly synchronous process, the immotile spermatids of Ascaris suum extend pseudopods and become rapidly crawling sperm when treated with an extract from the glandular vas deferens of the male under strict anaerobic conditions. Within 9-12 min, a pseudopod develops, elongates rapidly, and exhibits a continuous flow of membrane specializations, the villipodia, from tip toward base. When attached to acid-washed glass, the pseudopod pulls the cell body along at speeds exceeding 70 microns/min. The pseudopod length remains constant while retrograde flow of villipodia proceeds at the same rate as the sperm's forward movement. Cohorts of about 15 villipodia form at the leading edge, move rearward together, and disappear at the junction of pseudopod and cell body. These are the terminations of branched, refringent fibers, which extend the length of the pseudopod. The latter are the fiber complexes that form its cytoskeleton (Sepsenwol et al.: Journal of Cell Biology 108:55-66, 1989). Locomoting cells sometimes change direction when another crawls by and follow each other. When cells are exposed to air, forward movement ceases in a predictable pattern: the forward extension of the leading edge ceases, the pseudopod shortens from the base, and the cell body continues to be pulled forward. These data contribute to a model for Ascaris sperm amoeboid motility in which independent processes of continuous extension at the leading edge and continuous shortening at the base of the pseudopod act to propel the cell forward.  相似文献   

3.
The crawling movement of nematode sperm, like that of many other crawling metazoan cells, is accompanied by movement of membrane components from the leading edge of the cell rearward. We used colloidal gold conjugates of monoclonal antibodies (CGP-ABY) to membrane proteins on Caenorhabditis elegans sperm to examine this surface movement by electron microscopy. Antibody binding sites on fixed sperm are distributed uniformly over the cell surface. However, blocking these sites on live sperm with unlabelled antibody or removing them with protease and then pulse-labelling the cell with CGP-ABY revealed that new antigen is assembled onto the surface at the tips of the stubby projections that stud the pseudopod surface. These proteins then move rearward rapidly so that the pseudopod surface pool of antigen is replaced within 2 min. The same pattern of surface movement was observed when live cells were labelled with CGP-ABY and then washed with buffer before fixation. Bound CGP-ABY was cleared first from the tips of the projections and subsequently from the entire pseudopod surface. These gold particles accumulated at the base of the pseudopod without moving onto the cell body or being internalized. We did, however, detect a pool of antigen in the pseudopod cytoplasm that may be available for assembly onto the pseudopod surface. We propose that the localized assembly of new membrane and its subsequent rearward movement may play an important role in sperm locomotion.  相似文献   

4.
A continuum model of protrusion of pseudopod in leukocytes.   总被引:4,自引:3,他引:1       下载免费PDF全文
C Zhu  R Skalak 《Biophysical journal》1988,54(6):1115-1137
The morphology of human leukocytes, the biochemistry of actin polymerization, and the theory of continuum mechanics are used to model the pseudopod protrusion process of leukocytes. In the proposed model, the pseudopod is considered as a porous solid of F-actin network, the pores of which are full of aqueous solution. G-actin is considered as a "solute" transported by convection and diffusion in the fluid phase. The pseudopod grows as actin filaments elongate at their barbed ends at the tip of the pseudopod. The driving force of extension is hypothesized as being provided by the actin polymerization. It is assumed that elongation of actin filaments, powered by chemical energy liberated from the polymerization reaction, does mechanical work against opposing pressure on the membrane. This also gives rise to a pressure drop in the fluid phase at the tip of the pseudopod, which is formulated by an equation relating the work done by actin polymerization to the local state of pressure. The pressure gradient along the pseudopod drives the fluid filtration through the porous pseudopod according to Darcy's Law, which in turn brings more actin monomers to the growing tip. The main cell body serves as a reservoir of G-actin. A modified first-order equation is used to describe the kinetics of polymerization. The rate of pseudopod growth is modulated by regulatory proteins. A one-dimensional moving boundary problem based on the proposed mechanism has been constructed and approximate solutions have been obtained. Comparison of the solutions with experimental data shows that the model is compatible with available observations. The model is also applicable to growth of other cellular systems such as elongation of acrosomal process in sperm cells.  相似文献   

5.
The pseudopods of Caenorhabditis elegans spermatozoa move actively causing some cells to translocate when the sperm are dissected into a low osmotic strength buffered salts solution. On time-lapse video tapes, pseudopodial projections can be seen moving at 20-45 micrometers/min from the tip to the base of the pseudopod. This movement occurs whether or not the cell is attached to a substrate. Translocation of the cell is dependent on the substrate. Some spermatozoa translocate on acid-washed glass, but a better substrate is prepared by drying an extract of Ascaris uteri (the normal site of nematode sperm motility) onto glass slides. On this substrate more than half the spermatozoa translocate at a velocity (21 micrometers/min) similar to that observed in vivo. Translocating cells attach to the substrate by their pseudopodial projections. They always move toward the pseudopod; changes in direction are caused by changes in pseudopod shape that determine points of detachment and reattachment of the cell to the substrate. Actin comprises less than 0.02% of the proteins in sperm, and myosin is undetectable. No microfilaments are found in the sperm. Immunohistochemistry shows that some actin is localized in patches in the pseudopod. The movement of spermatozoa is unaffected by cytochalasins, however, so there is no evidence that actin participates in locomotion. Fertilization-defective mutants in genes fer-2, fer-4, and fer-6 produce spermatozoa with defective pseudopodial projections, and these spermatozoa are largely immotile. Mutants in the spermatozoa do not translocate. Thus pseudopod movement is correlated with the presence of normal projections. Twelve mutants with defective muscles have spermatozoa with normal movement, so these genes do not specify products needed for both muscle and nonmuscle cell motility.  相似文献   

6.
The sodium- and potassium-transporting ionophore monensin induces the maturation of Caenorhabditis elegans spermatids to spermatozoa in vitro. Rearrangement of cytoplasm, fusion of membranous organelles with the plasma membrane and growth of pseudopodia, all characteristic of in vivo spermiogenesis, occur within five minutes after exposure to monensin at concentrations of 0.1–1.0 μM. This activation is dependent upon external Na+ and K+ ions but not Ca2+ ions. Monensin-activated spermatozoa have normal morphology and normal amoeboid motility. During activation spermatids twitch and rotate prior to pseudopod extension. Analysis of intermediates by transmission and scanning electron microscopy reveals that the sequence of morphogenetic events leading from the spherical spermatid to the polarized spermatozoan involves microvilli rearrangement and membranous organelle fusion, cytoplasmic polarization, then pseudopod extension.  相似文献   

7.
Caenorhabditis elegans sperm are nonflagellated cells that lack actin and myosin yet can form pseudopods to propel themselves over solid substrates. Surface-attached probes such as latex beads, lectins, and antimembrane protein monoclonal antibodies move rearward over the dorsal pseudopod surface of sessile cells. Using monoclonal antibodies against membrane proteins of C. elegans sperm to examine the role of localized membrane assembly and rearward flow in crawling movement, we determined that substrates prepared by coating glass with antimembrane protein antibodies, but not naked glass or other nonmembrane-binding proteins, promote sperm motility. Sperm locomotion is inhibited in a concentration-dependent fashion when cells are bathed with soluble antimembrane protein monoclonal antibodies but not with antimouse Ig antibodies or a monoclonal antibody against a sperm cytoplasmic protein. Our results suggest that C. elegans sperm crawl by gaining traction with substrate-attached ligands via their surface proteins and by using the motor that moves those proteins rearward on unattached cells to pull the entire cell forward. Continuous insertion of new proteins at the front of the cell and their subsequent adhesion to the substrate allows this process to continue.  相似文献   

8.
After Listeria is phagocytosed by a macrophage, it dissolves the phagosomal membrane and enters the cytoplasm. The Listeria then nucleates actin filaments from its surface. These actin filaments rearrange to form a tail with which the Listeria moves to the macrophage surface as a prelude to spreading. Since individual actin filaments appear to remain in their same positions in the tail in vitro after extraction with detergent, the component filaments must be cross-bridged together. From careful examination of the distribution of actin filaments attached to the surface of Listeria and in the tail, and the fact that during and immediately after division filaments are not nucleated from the new wall formed during septation, we show how a cloud of actin filaments becomes rearranged into a tail simply by the mechanics of growth. From lineage studies we can relate the length of the tail to the age of the surface of Listeria and make predictions as to the ratio of Listeria with varying tail lengths at a particular time after the initial infection. Since we know that division occurs about every 50 min, after 4 h we would predict that if we started with one Listeria in a macrophage, 16 bacteria would be found, two with long tails, two with medium tails, four with tiny tails, and eight with no tails or a ratio of 1:1:2:4. We measured the lengths of the tails on Listeria 4 h after infection in serial sections and confirmed this prediction. By decorating the actin filaments that make up the tail of Listeria with subfragment 1 of myosin we find (a) that the filaments are indeed short (maximally 0.3 microns in length); (b) that the filament length is approximately the same at the tip and the base of the tail; and (c) that the polarity of these filaments is inappropriate for myosin to be responsible or to facilitate movement through the cytoplasm, but the polarity insures that the bacterium will be located at the tip of a pseudopod, a location that is essential for spreading to an adjacent cell. Putting all this information together we can begin to unravel the problem of how the Listeria forms the cytoskeleton and what is the biological purpose of this tail. Two functions are apparent: movement and pseudopod formation.  相似文献   

9.
Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface.  相似文献   

10.
We have studied chemotaxis by individual Dictyostelium discoideum amoebae using strong, local gradients of the chemoattractant cyclic AMP. Gradients were provided by diffusion of cyclic AMP from a microneedle, which could be positioned at various points around the cell. Responses to changes in the gradient indicate how the cell is structurally organized for chemotactic movement. There is a polarity in the responsiveness of the surface to stimulation by cyclic AMP along the length of the amoeba. Furthermore, two aspects of chemotactic movement can be distinguished. The first response to cyclic AMP is a locally generated extension of a hyaline pseudopod from the region of the surface nearest the stimulus. The second response, the flow of cytoplasm in the direction of the stimulus, is coordinated and separate from the first response. The coordination appears to depend on the nucleus or on the microtubule-organizing center.  相似文献   

11.
Intracellular vesicle movement, cAMP and myosin II in Dictyostelium   总被引:1,自引:0,他引:1  
Dictyostelium amoebae were analyzed before and after rapid addition of 10(-6) M cAMP for cellular motility, dynamic shape changes, and intracellular particle movement. Before cAMP addition, amoebae moved in a persistent anterior fashion and were elongate with F-actin localized predominantly in the anterior pseudopod. Intracellular particles moved rapidly and anteriorly. Within seconds after 10(-6) M cAMP addition, cells stopped translocating, pseudopod formation ceased, intracellular particle movement was depressed, and F-actin was lost from the pseudopod and concomitantly relocalized in the cell cortex. After 10 seconds, expansion zones reappeared but were small and no longer anteriorly localized. Vesicle movement partially rebounded but was no longer anteriorly directed. The myosin II null mutant HS2215 exhibited both depressed cellular translocation and vesicle movement. The addition of cAMP to HS2215 cells did not result in any detectable change in the random, depressed movement of particles. The results with HS2215 suggest that myosin II is essential for (1) rapid cellular translocation, (2) cellular polarity, (3) rapid particle movement, (4) anteriorly directed particle movement, and (5) the cAMP response. Electron micrographs suggest that at least half of the particles examined in this study contain in turn smaller membrane bound vesicles or multilamellar membrane bodies. The possible role of these vesicles is discussed.  相似文献   

12.
The spermatogenesis of the free‐living marine nematode Metachromadora itoi was studied with electron microscopy. Spermatocytes and early spermatids have no cytoplasmic components specific for nematodes, i.e. membranous organelles (MO) and fibrous bodies (FB). The late spermatids are subdivided into the residual body and the main cell body with a centrally located nucleus devoid of a nuclear envelope. A pair of 9 × 2 centrioles is associated with the nuclei of spermatids and spermatozoa. The nucleus of the mature spermatid is surrounded by a thick mass of radially arranged FB delimited externally by a discontinuous layer of mitochondria, which underlie a thin ectoplasm. Sperm development is accompanied by transfer of FB matter through the mitochondrion layer into the ectoplasm. The immature spermatozoa from the testis have the centrally located nucleus surrounded by a transparent halo with remnants of FB. The halo is delimited by a sphere of mitochondria that underlie the thick fibrous ectoplasm, a derivative of the FB. In the mature spermatozoa the ectoplasm is transformed into the prominent unpolarized pseudopod. The central nucleus is surrounded by a transparent halo and a sphere of mitochondria, which underlie the pseudopod. MO were not found throughout spermatogenesis. In general, spermatogenesis in M. itoi differs from that observed in many nematodes but resembles in some details the sperm development in some chromadorid and tylenchomorph nematodes. The phylogenetic importance of this sperm development is discussed.  相似文献   

13.
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and--unexpectedly--lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractants.  相似文献   

14.
To understand movement of amoeboid cells we have developed an information tool that automatically detects protrusions of moving cells. The algorithm uses digitized cell recordings at a speed of ~1 image per second that are analyzed in three steps. In the first part, the outline of a cell is defined as a polygon of ~150 nodes, using the previously published Quimp2 program. By comparing the position of the nodes in place and time, each node contains information on position, local curvature and speed of movement. The second part uses rules for curvature and movement to define the position and time of start and end of a growing pseudopod. This part of the algorithm produces quantitative data on size, surface area, lifetime, frequency, and direction of pseudopod extension. The third part of the algorithm assigns qualitative properties to each pseudopod. It decides on the origin of a pseudopod as splitting of an existing pseudopod or as extension de novo. It also decides on the fate of each pseudopod as merged with the cell body or retracted. Here we describe the pseudopod tool and present the first data based on the analysis of ~1000 pseudopodia extended by Dictyostelium cells in the absence of external cues.  相似文献   

15.
The objective of this work was to characterize tumor cell locomotion in response to chemotactic stimulation using a dual-micropipet assay. The assay involves two micropipets. An individual A2058 human melanoma cell was retained, without pressure gradient, in a pipet of approximately 14 micrometers i.d. A solution of type IV collagen, chosen as the chemotactic source, was placed in another pipet (approximately 10 micrometers o.d.) with zero pressure at the pipet tip. The smaller pipet was then inserted into the larger one containing the melanoma cell. The initial chemoattractant concentration (C0) and the distance between the tip of the small pipet and the cell surface (delta) provided a gradient (C0/delta) for tumor cell locomotion toward stimulation. This novel assay provides a direct measure of cell movement: cyclic pseudopod protrusion (Lp) and subsequent cell locomotion (Lc). The influences of different adhesion substrates on cell locomotion were also studied. The peak length in Lp precedes the highest locomotion velocity (dLc/dt) by an apparent lag time. C0/delta influences pseudopod protrusion frequency (fp) and dLc/dt, but not significantly on Lp. Substrate adhesions affect dLc/dt, but apparently not Lp or fp. In conclusion, pseudopod protrusion and substrate adhesion are two necessary but mutually independent factors in tumor cell locomotion. dLc/dt correlates with changes in C0/delta, which is in significant correlation with fp but not Lp.  相似文献   

16.
《The Journal of cell biology》1990,111(6):2499-2512
A characteristic feature of fibroblast locomotory activity is the rearward transport across the leading lamella of various materials used to mark the cell surface. The two processes most frequently invoked as explanations for this transport phenomenon, called capping, are (a) retrograde membrane flow arising from directed membrane insertion and (b) rearward cortical cytoskeletal flow arising from cytoskeletal assembly and contraction. The retrograde lipid flow hypothesis, the most current form of the membrane flow scheme, makes explicit predictions about the movement of membrane proteins subjected to the postulated rearward lipid flow. Several of these predictions were tested by comparing the behavior of four membrane proteins, Pgp-1, Thy- 1, H-2, and influenza HA0, identified by fluorescent antibodies. With the exception of Pgp-1, these proteins were uniformly distributed under nonaggregated conditions but were capped when aggregated into patches. In contrast, Pgp-1 was capped in similar time frames in both nonaggregated and aggregated states where the lateral diffusion coefficients were very different. Furthermore, the capping behavior of two tagged membrane proteins was markedly different yet both had similar diffusion coefficients. The results from these tests disprove the bulk membrane flow hypothesis and are at odds with explicit predictions of the retrograde lipid flow hypothesis for the mechanism of capping. This work, therefore, supports the alternative cytoskeletal- based mechanism for driving capping. Requirements for coupling cytoskeletal movement to membrane components are discussed.  相似文献   

17.
M Fritz  M Radmacher    H E Gaub 《Biophysical journal》1994,66(5):1328-1334
The redistribution of platelet constituents during activation is essential for their physiological function of maintaining hemostasis. We report here about real time investigations of the activation of native human platelets under physiological conditions from the initial formation of filopodia to the fully spread form by atomic force microscopy. We followed the trafficking of granules and their interaction with the plasma membrane within single cells. Our results show movement of certain granula towards the lamellipodia. Analysis of this rearrangement and the subsequent enlargement of the platelet surface reveals details of the membrane spreading process. Images of living cells are presented that show the distribution of cytoskeletal components and membrane-bound filaments at a resolution of better than 50 nm. The local minimum forces between the tip and the platelets were estimated to be smaller than 60 pN. A model for the elastic contributions of the glycocalix to the tip/membrane interaction was developed using the theory of grafted polymers.  相似文献   

18.
Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce actin accumulation beneath adherent bacteria. We found that EPEC adherence to epithelial cells mediates the formation of fingerlike pseudopods (up to 10 microm) beneath bacteria. These actin-rich structures also contain tyrosine phosphorylated host proteins concentrated at the pseudopod tip beneath adherent EPEC. Intimate bacterial adherence (and pseudopod formation) occurred only after prior bacterial induction of tyrosine phosphorylation of an epithelial membrane protein, Hp90, which then associates directly with an EPEC adhesin, intimin. These interactions lead to cytoskeletal nucleation and pseudopod formation. This is the first example of a bacterial pathogen that triggers signals in epithelial cells which activates receptor binding activity to a specific bacterial ligand and subsequent cytoskeletal rearrangement.  相似文献   

19.
Cell surface polypeptides of mouse pachytene spermatocytes and round spermatids (steps 1–8) have been iodinated using 1,2,3,6,tetracholoro-3α, 6α-diphenylglycouril (IODOGEN). Labeled proteins have been assayed using two-dimensional polyacrylamide electrophoresis and radioautography. Purified plasma membranes, prepared from both spermatocytes and spermatids after the iodination of intact cells, exhibit 25–30 polypeptides which label reproducibly. No significant qualitative differences are noted in the labeled polypeptide map obtained from each of the purified cell types. Iodinated proteins range in molecular weight from greater than 100k daltons to approximately 40k daltons. The isoelectric points of labeled constituents range from pI 5.7 to 7.2. Three polypeptides represent the major iodinated species: p 94/5.8, p 75/5.9, and p 53/7.1. Comparison with total plasma membrane constituents assayed using Coomassie brilliant blue indicates that many of the radioactively labeled proteins are not present in quantities sufficient to allow ready detection without isotopic techniques. As a result, many of the proteins identified autoradiographically represent newly described surface components of mouse pachytene spermatocytes and round spermatids. The preparation of purified plasma membrane fractions prior to electrophoresis ensures that all iodinated species are in fact cell surface components. Furthermore, experiments designed to assess the vectorial nature of the IODOGEN-catalyzed labeling procedure suggest that most, if not all, of the iodinated species are exposed on the external side of the cell plasma membrane. Therefore, these studies have (1) identified hitherto unrecognized plasma membrane components of mouse pachytene spermatocytes and round spermatids and (2) provided the first available biochemical data concerning the molecular orientation of particular proteins in the surface membranes of developing mouse spermatogenic cells.  相似文献   

20.
Engulfment of particles by phagocytes is induced by their interaction with specific receptors on the cell surface, which leads to actin polymerization and the extension of membrane protrusions to form a closed phagosome. Membrane delivery from internal pools is considered to play an important role in pseudopod extension during phagocytosis. Here, we report that endogenous ADP ribosylation factor 6 (ARF6), a small GTP-binding protein, undergoes a sharp and transient activation in macrophages when phagocytosis was initiated via receptors for the Fc portion of immunoglobulins (FcRs). A dominant-negative mutant of ARF6 (T27N mutation) dramatically affected FcR-mediated phagocytosis. Expression of ARF6-T27N lead to a reduction in the focal delivery of vesicle-associated membrane protein 3+ endosomal recycling membranes at phagocytosis sites, whereas actin polymerization was unimpaired. This resulted in an early blockade in pseudopod extension and accumulation of intracellular vesicles, as observed by electron microscopy. We conclude that ARF6 is a major regulator of membrane recycling during phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号