首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epidermal growth factor (EGF) stimulates the turnover of phosphoinositides in A431 cells. In cells that were pretreated with EGF for 30 min at 37 degrees C and then washed to remove surface-bound hormone, a 70-100% decrease in the EGF-stimulated production of inositol monophosphate, inositol bisphosphate, and inositol triphosphate was noted when the cells were exposed to the agonist a second time. Since only a 15% decrease in receptor number was observed in these pretreated cells, the loss of responsiveness to EGF for the production of inositol phosphates could not be attributed to a down-regulation of the EGF receptors. These data suggest that pretreatment of A431 cells with high concentrations of EGF leads to a desensitization of the EGF receptor. This desensitization of the receptor by EGF is apparent within 10-15 min of the addition of EGF and is maximal by 30 min. The desensitization appears to be homologous in nature since pretreatment of cells with EGF did not diminish their responsiveness to bradykinin; and conversely, pretreatment with bradykinin did not diminish the subsequent responsiveness of the cells to EGF. Desensitization to EGF was observed in cells in which protein kinase C had been down-regulated by prolonged treatment with 12-O-tetradecanoylphorbol-13-acetate, implying that EGF receptor desensitization is independent of protein kinase C. The desensitizing effects of EGF on growth factor-induced phosphatidylinositol turnover could be prevented by pretreatment of the cells with the calmodulin antagonist trifluoperazine, suggesting that calmodulin may be involved in the regulation of EGF receptor sensitivity.  相似文献   

2.
We have followed the internalization pathway of both epidermal growth factor (EGF) and its receptor in human epidermoid carcinoma (A431) cells. Using EGF conjugated with horseradish peroxidase and anti-receptor monoclonal antibodies (TL5 and EGFR1) coupled either directly or indirectly to colloidal gold we have identified an extensive elaboration of endosomal compartments, consisting of a peripheral branching network of tubular cisternae connected to vacuolar elements that contain small vesicles and a pericentriolar compartment consisting of a tubular cisternal network connected to multivesicular bodies. Immunocytochemistry on frozen thin sections using receptor-specific antibody-gold revealed that at 4 degrees C in the presence of EGF, receptors were mainly on the plasma membrane and, to a lesser extent, within some elements of both the peripheral and pericentriolar endosomal compartments. Upon warming to 37 degrees C there was an EGF-dependent redistribution of most binding sites, first to the peripheral endosome compartment and then to the pericentriolar compartment and lysosomes. Upon warming only to 20 degrees C the ligand-receptor complex accumulated in the pericentriolar compartment. Acid phosphatase cytochemistry identifies hydrolytic activity only within secondary lysosomes and trans cisternae of the Golgi stacks. Together these observations suggest that the prelysosomal endosome compartment extends to the pericentriolar complex and that the transfer of EGF receptor complexes to the acid phosphatase-positive lysosome involves a discontinuous, temperature-dependent step.  相似文献   

3.
Synthetic compounds called tyrphostins were examined for their effects on cells which are mitogenically responsive to epidermal growth factor (EGF). We studied in detail the effects of two tyrphostins on EGF binding, tyrosine phosphorylation in intact cells, EGF-receptor internalization, and mitogenesis. These compounds inhibited EGF-stimulated [3H]thymidine incorporation in a specific manner and the degree of selectivity varied. Both compounds inhibited EGF-stimulated receptor autophosphorylation and tyrosine phosphorylation of endogenous substrates in intact cells at doses that correlated with the IC50 for [3H] thymidine incorporation. These results are consistent with the notion that tyrosine phosphorylation is a crucial signal in transduction of the mitogenic message delivered by EGF. The compound RG50864 demonstrated specificity at inhibiting EGF-stimulated cell growth compared with stimulation with either platelet-derived growth factor or serum. For both compounds RG50864 and RG50810, long term exposure (16 h) of cells to tyrphostins was required for optimal inhibition because of the instability and slow action of these compounds. Tyrphostins did not alter cell surface display of EGF-receptor, EGF binding or EGF-induced internalization, degradation, and down-regulation of EGF receptors. These novel synthetic inhibitors, specific for EGF-receptor kinase, offer a new method to inhibit EGF-stimulated cell proliferation which may be useful in treating specific pathological conditions involving cellular proliferation, including different types of cancers.  相似文献   

4.
Epidermal growth factor (EGF) stimulates EGF receptor synthesis   总被引:13,自引:0,他引:13  
Epidermal growth factor (EGF) binds to the extracellular domain of a specific 170,000-dalton transmembrane glycoprotein; this results in rapid removal of both ligand and receptor from the cell surface. In WB cells, a rat hepatic epithelial cell line, ligand-directed receptor internalization leads to receptor degradation. We tested whether the EGF receptor was replenished at a constitutive or enhanced rate following EGF binding by immunoprecipitating biosynthetically labeled EGF receptor from cells cultured with [35S]methionine. EGF stimulated receptor synthesis within 2 h in a dose-dependent manner; this was particularly evident when examining the nascent form of the receptor. To determine the site of EGF action, total WB cell RNA was transferred to nitrocellulose paper after electrophoresis and was hybridized to cDNA probes from both the external and cytoplasmic coding regions of the human EGF receptor. EGF increased receptor mRNA by 3-5-fold. Therefore, at least in some cells, the surface action of EGF that leads to EGF receptor degradation is counterbalanced by a positive effect on receptor synthesis.  相似文献   

5.
The epidermal growth factor (EGF) receptor tyrosine kinase activity is required for both the earliest EGF-stimulated post-binding events (enhancement of inositol phosphate formation and Ca2+ influx, activation of Na+/H+ exchange), and the ultimate EGF-induced mitogenic response. To assess the role of EGF receptor kinase in EGF-induced metabolic effects (2-deoxyglucose and 2-aminoisobutyric acid uptake), we used NIH3T3 cells (clone 2.2), which do not possess endogenous EGF receptors and which were transfected with cDNA constructs encoding either wild type or kinase-deficient human EGF receptor (HER). In addition, we tested the importance of three HER autophosphorylation sites (Tyr-1068, Tyr-1148, and Tyr-1173) in transduction of EGF-stimulated 2-deoxyglucose uptake. Taking our data together, we conclude the following: (i) HER tyrosine kinase activity is required to elicit EGF stimulation of both 2-deoxyglucose and 2-aminoisobutyric acid uptake; (ii) mutations on individual HER autophosphorylation sites, Tyr-1068, Tyr-1148, and Tyr-1173 do not impair EGF-stimulated 2-deoxyglucose uptake.  相似文献   

6.
The epidermal growth factor receptor (EGFR) mediates the actions of a family of bioactive peptides that include epidermal growth factor (EGF) and amphiregulin (AR). Here we have studied AR and EGF mitogenic signaling in EGFR-devoid NR6 fibroblasts that ectopically express either wild type EGFR (WT) or a truncated EGFR that lacks the three major sites of autophosphorylation (c'1000). COOH-terminal truncation of the EGFR significantly impairs the ability of AR to (i) stimulate DNA synthesis, (ii) elicit Elk-1 transactivation, and (iii) generate sustained enzymatic activation of mitogen-activated protein kinase. EGFR truncation had no significant effect on AR binding to receptor but did result in defective GRB2 adaptor function. In contrast, EGFR truncation did not impair EGF mitogenic signaling, and in c'1000 cells EGF was able to stimulate the association of ErbB2 with GRB2 and SHC. Elk-1 transactivation was monitored when either ErbB2 or a truncated dominant-negative ErbB2 mutant (ErbB2-(1-813)) was overexpressed in cells. Overexpression of full-length ErbB2 resulted in a strong constitutive transactivation of Elk-1 in c'1000 but only slightly stimulated Elk-1 in WT or parental NR6 cells. Conversely, overexpression of ErbB2-(1-813) inhibited EGF-stimulated Elk-1 transactivation in c'1000 but not in WT cells. Thus, the cytoplasmic tail of the EGFR plays a critical role in AR mitogenic signaling but is dispensable for EGF, since EGF-activated truncated EGFRs can signal through ErbB2.  相似文献   

7.
Normal rat kidney (NRK) fibroblasts are immortalized cells that are strictly dependent on externally added growth factors for proliferation. When cultured in the presence of epidermal growth factor (EGF) as the only growth stimulating hormone, these cells have a normal phenotype and undergo density-dependent growth inhibition. It has been postulated that this density-arrest results from a decrease of EGF receptor levels below a threshold level which makes these cells unresponsive to stimulation by EGF. In the present study, we show that NRK cells, made quiescent by serum-deprivation at submaximum density, are mitogenically still responsive to EGF, but show enhanced mitogenic stimulation after 8 hr pre-treatment with either transforming growth factor β (TGFβ) or retinoic acid (RA), while prostaglandin F (PGF) and bradykinin (BK) enhance the mitogenic stimulation by EGF only slightly under these conditions. Addition of TGFβ or RA results in an increase of both 125I-EGF-binding capacity and EGF receptor mRNA levels. Using flow cytometric analysis, we show that pre-treatment with TGFβ or RA increases the percentage of cells entering the cell cycle as a function of time. Furthermore, pre-treatment of the cells with TGFβ or RA increases the rate of mitogen-activated protein kinase (MAPK) phosphorylation by EGF. PGF and BK also increase EGF receptor levels, but only with delayed kinetics. These results show that already in serum-deprived quiescent NRK cells, EGF receptor levels limit EGF-induced mitogenic stimulation. This observation provides further evidence for the regulating role of the EGF receptor in density-dependent growth control of NRK cells. J. Cell. Physiol. 174:9–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The conditioned medium from Sertoli cells contains a potent mitogen(s) that can markedly stimulate the proliferation of 4 different cell lines of endoderm or mesoderm origin in the presence or absence of serum. With A431 cells, conditioned medium produced in a dose-dependent manner up to a 5.2-fold increase in cell number after 5 days in culture. Addition of follicle-stimulating hormone (FSH), testosterone, retinol, and insulin to the Sertoli cells increased the secretion of the mitogenic activity. The ability of Sertoli cell conditioned medium (SCCM) to displace 125I-labeled epidermal growth factor (125I-EGF) from formalin-fixed A431 cells was also examined. The SCCM from Sertoli cells incubated with insulin contained 1.42 ng eq of EGF/ml; testosterone, retinol, and FSH (in the presence of insulin) further increased the secretion of this EGF competing activity to 2.09, 2.56, and 3.22 ng eq/ml, respectively. The amount of EGF competing activity was positively correlated with mitogenic activity. Separation of SCCM by gel filtration on Bio-Gel P-10 produced three major peaks of EGF-competing activity at apparent Mr = 1800-2100, 3800-4200, and 8000-9500. Chromatographing SCCM (in the presence of protease inhibitors) on size exclusion high performance liquid chromatography revealed two peaks of EGF competing activity at Mr about 8000 and 2000 coincident with and proportional to peaks of mitogenic activity. This activity was heat-sensitive and resistant to reducing agents, and addition of an equivalent amount of EGF as that present in SCCM produced an inhibition in growth of the A431 cells compared to a 3-fold stimulation with SCCM. Thus, the Sertoli cells secrete a potent mitogen that is distinct from EGF and alpha TGF. This factor that we have termed Sertoli cell-secreted growth factor is hormonally regulated by FSH, testosterone, and retinol and may play an important role in controlling spermatogenesis.  相似文献   

9.
The G protein-coupled thrombin receptor can induce cellular responses in some systems by transactivating the epidermal growth factor (EGF) receptor. This is in part due to the stimulation of ectoproteases that generate EGF receptor ligands. We show here that this cannot account for the stimulation of proliferation or migration by thrombin of Swiss 3T3 cells. Thrombin has no direct effect on the activation state of the EGF receptor or of its downstream effectors. However, thrombin induces the subcellular clustering of the EGF receptor at filamentous actin-containing structures at the leading edge and actin arcs of migrating cells in association with other signaling molecules, including Shc and phospholipase Cgamma1. In these thrombin-primed cells, the subsequent migratory response to EGF is potentiated. Thrombin did not potentiate the EGF-stimulated EGF receptor phosphorylation. Thus, in Swiss 3T3 cells the G protein-coupled thrombin receptor can potentiate the EGF tyrosine kinase receptor response when activated by EGF, and this appears to be due to the subcellular concentration of the receptor with downstream effectors and not to the overall ability of EGF to induce receptor transphosphorylation. Thus, the EGF receptor subcellular localization which is altered by thrombin appears to be an important determinant of the efficacy of downstream EGF receptor signaling in cell migration.  相似文献   

10.
The binding of epidermal growth factor (EGF) to its cell surface receptor (EGF-R) results in a number of intracellular responses including the activation of the receptor intracellular tyrosine kinase. Receptor oligomerization induced by ligand binding has been suggested to play an important role in signal transduction. However, the mechanisms involved in oligomerization and signal transduction are poorly understood. We have produced and purified several milligrams of recombinant extracellular domain of the EGF receptor (EGF-Rx) using the baculovirus/insect cell expression system. The baculovirus-generated EGF-Rx is glycosylated, has had its signal peptide correctly cleaved, and exhibits a dissociation constant for EGF similar to that for solubilized full-length receptor, of about 100 nM. The binding of EGF to EGF-Rx leads to the formation of receptor dimers and higher oligomerization states which are irreversibly captured using the covalent cross-linking agent disuccinimidyl suberate. Interestingly, purified receptor monomers and dimers, stabilized by the cross-linker in the presence of EGF, exhibit increased binding affinity toward EGF as compared with receptor monomers which have not been exposed to EGF. It appears that the high affinity state of receptor can be maintained by the covalent cross-linking agent. These results indicate that in addition to ligand binding, the extracellular domain of EGF receptor possesses the inherent ability to undergo ligand-induced dimerization and that the low affinity state is converted to a high affinity state by EGF.  相似文献   

11.
In the last few decades, several growth factors were identified in the testis of various mammalian species. Growth factors are shown to promote cell proliferation, regulate tissue differentiation, and modulate organogenesis. In the present investigation we have studied the localization of EGF and EGFR in the adult bovine testis by means of immunohistochemical method. Our results demonstrated that EGF and EGFR were localized solely to the bovine testicular germ cells (spermatogonia, spermatocytes, and round spermatids). In contrast, the somatic testicular cells (i.e., Sertoli, Leydig, and myofibroblast cells) exhibited no staining affinity. EGF and EGFR were additionally detected in the epithelial lining of straight tubules and rete testis. Interestingly, the distribution of EGF and EGFR in the germ cells was mainly dependent upon the cycle of the seminiferous epithelium since their localization appeared to be preponderant during the spermatogonia proliferation and during the meiotic and spermiogenic processes. In conclusion, such findings may suggest that EGF and EGFR are important paracrine and/or autocrine regulators of spermatogenesis in bovine.  相似文献   

12.
We compared the ability of dialysed fetal bovine serum and of combinations of purified growth-promoting factors such as insulin, epidermal growth factor (EGF), vasopressin, fibroblast-derived growth factor and antitubulin agents to stimulate DNA synthesis in 3T3 cells maintained in the absence or presence of inorganic phosphate (Pi). When DNA synthesis was stimulated by serum in the absence of Pi the level induced was 70% of that observed in Pi-containing medium. In contrast, combinations of growth-promoting factors in the absence of Pi stimulated less than 8% of the DNA synthesis which they induced in complete medium. Addition of as little as 50 μM Pi fully restored the ability of the factors to stimulate DNA synthesis. Cells stimulated by purified mitogens in the absence of Pi became blocked in early G1, and for up to 48 h the block was reversible by readdition of pi. The effectiveness of dialysed serum to stimulate DNA in the absence of Pi suggest that dialysed serum might contain a component capable of supplying Pi to support DNA synthesis. Indeed, delipidization of serum by solvent extraction resulted in loss of ability to stimulate DNA synthesis in the absence of pi, but delipidized serum stimulated DNA synthesis virtually, as well as dialysed serum in the presence of Pi. Previous conclusions suggesting that Pi is not essential for DNA synthesis appear to require re-evaluation.  相似文献   

13.
In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the mu2 or alpha subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the alpha subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the alpha subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.  相似文献   

14.
Epidermal growth factor (EGF) may either stimulate or inhibit cell growth. To elucidate the mechanism of these varied effects, we compared EGF action in parental A431 cells in which cell growth is inhibited, and clone 15, a mutant of these cells resistant to EGF growth inhibition. In both lines, EGF receptor was present in similar concentrations and underwent tyrosine phosphorylation to the same extent. Likewise, in both lines, acute exposure to EGF stimulated an increase in free cytoplasmic [Ca2+], as well as a similar increase in phosphorylation of lipocortin 1, a major substrate for the EGF receptor kinase whose phosphorylation is calcium-dependent. On the other hand, pretreatment of clone 15 cells with EGF for 72 h abolished EGF-induced phosphorylation of lipocortin 1 and led to a loss of the increase in cytoplasmic free [Ca2+], whereas no such desensitization was seen in the parental A431 cells. These data indicate a link between EGF-induced increase in cytoplasmic calcium, lipocortin phosphorylation, and cell growth and suggest that differences in mechanisms of desensitization to these immediate actions of EGF may lead to altered growth response to this hormone.  相似文献   

15.
The capacity of cultured human fibroblasts to bind 125I-labeled epidermal growth factor (EGF) was measured during protein synthesis inhibition and reinitiation. Protein synthesis was inhibited by incubation of human fibroblasts in histidine-free medium supplemented with L-histidinol to produce a stringent amino acid starvation. Under these conditions 125 I-EGF binding activity decreased with a half-life of 14.5 hours. Protein synthesis could be rapidly reinitiated by the addition of L-histidine to human fibroblasts which had been preincubated in histidinol containing media for 36 to 48 hours. 125I-EGF binding activity rapidly increased upon the reinitiation of protein synthesis. In the presence of serum 100% of the original binding capacity was recovered ten hours after the reinitiation or protein synthesis, while 70% of the binding capacity was recovered in 12 hours in serum-free media. The recovery of 125I-EGF binding activity after the reinitiation of protein synthesis, was not blocked by the presence of Actinomycin D, indicating that the messenger RNA for the EGF receptor may accumulate during the period of histidinol-mediated inhibition of protein synthesis. The time course of recovery of 125I-EGF binding activity after the reinitiation of protein synthesis is very similar to that observed during the recovery of receptor activity following "down regulation" of EGF receptor activity. Recovery from down regulation, however, was markedly sensitive to Actinomycin D.  相似文献   

16.
A region of the primary amino acid sequence of the epidermal growth factor receptor (EGF) protein-tyrosine kinase, which is involved in ATP binding, was identified using chemical modification and immunological techniques. EGF receptor was 14C-labelled with the ATP analogue 5'-p-fluorosulphonylbenzoyladenosine and from a tryptic digest a single radiolabelled peptide was isolated. The amino acid sequence was determined to be residues 716-724 and hence lysine residue 721 is located within the ATP-binding site. Antisera were elicited in rabbits to a synthetic peptide identical to residues 716-727 of the EGF receptor and the homologous sequence in v-erb B transforming protein from avian erythroblastosis virus. The affinity-purified antibodies precipitated human ECF receptor from A431 cells and placenta, and the v-erb B protein from erythroblasts. The antibodies inhibited EGF-stimulated receptor protein-tyrosine kinase autophosphorylation and phosphorylation of an exogenous peptide substrate containing tyrosine. The antibodies did not immunoprecipitate the transforming proteins pp60v-src or P120gag-abl or cAMP-dependent protein kinase, proteins which have homologous but not identical sequences surrounding the lysine residue within the ATP-binding site, nor did they react with the platelet-derived growth factor receptor. The antibodies had no effect on the kinase activity of purified v-abl protein in solution. The antibodies may therefore be a specific inhibitor of the tyrosine kinase of the EGF receptor.  相似文献   

17.
To study the activity of the epidermal growth factor (EGF) receptor during EGF-directed internalization, liver epithelial cells were exposed to EGF at 37 degrees C for various periods of time, washed, and homogenized at 0 degrees C. EGF receptor autophosphorylation was assessed in homogenates using [gamma-32P]ATP. Autophosphorylation was stimulated 3- to 6-fold in homogenates of cells incubated with EGF (100 ng/ml) for 15 min but was at or below basal levels in homogenates of cells treated with EGF for 2.5-5 min. This was surprising because immunoblotting revealed that EGF receptor phosphotyrosine (P-Tyr) content in intact cells was near maximal from 30 s to 5 min after EGF treatment. Excess EGF (1 microgram/ml), added after homogenization but prior to the assay, increased autophosphorylation in homogenates of cells that had not been treated with EGF, but failed to increase activity in homogenates of cells treated with EGF in culture for 2.5-5 min. Suppression of tyrosine phosphorylation of an exogenous kinase substrate was also observed at times paralleling the suppression of EGF receptor autophosphorylation. The transient suppression of receptor autophosphorylation in the cell-free assay was not explained by persistent occupation of autophosphorylation sites by phosphate added in the intact cells. The sites were greater than 80% dephosphorylated during the homogenization. Additionally phosphatase inhibition that prevented the normal loss of EGF receptor P-Tyr in intact cells at 15 min did not affect the pattern of early (2.5-5 min) suppression and later (15 min) stimulation of autophosphorylation measured in the cell-free assay. The suppression was not explained by activation of protein kinase C in that depletion of greater than 95% of cellular protein kinase C activity by an 18-h incubation of cells with 10 microM 12-O-tetradecanoylphorbol 13-acetate (TPA) did not affect the early suppression of autophosphorylation in EGF-treated cells. Moreover, under the conditions tested, activation of protein kinase C by short-term treatment (0.5-10 min) with TPA or angiotensin II did not appreciably alter subsequent autophosphorylation in the cell-free assay. In contrast, a 30 degrees C preincubation of homogenates from cells with suppressed EGF receptor autophosphorylation led to the recovery of the ability of EGF to stimulate EGF receptor autophosphorylation. These results suggest that a rapid reversible protein kinase C-independent process prevents detection of EGF receptor kinase activity during an early phase of EGF-dependent receptor internalization.  相似文献   

18.
Growth hormone (GH) promotes signaling by causing activation of the non-receptor tyrosine kinase, JAK2, which associates with the GH receptor. GH causes phosphorylation of epidermal growth factor receptor (EGFR; ErbB-1) and its family member, ErbB-2. For EGFR, JAK2-mediated GH-induced tyrosine phosphorylation may allow EGFR to serve as a scaffold for GH signaling. For ErbB-2, GH induces serine/threonine phosphorylation that dampens basal and EGF-induced ErbB-2 kinase activation. We now further explore GH-induced EGFR phosphorylation in 3T3-F442A, a preadipocytic fibroblast cell line that expresses endogenous GH receptor, EGFR, and ErbB-2. Using a monoclonal antibody that recognizes ERK consensus site phosphorylation (PTP101), we found that GH caused PTP101-reactive phosphorylation of EGFR. This GH-induced EGFR phosphorylation was prevented by MEK1 inhibitors but not by a protein kinase C inhibitor. Although GH did not discernibly affect EGF-induced EGFR tyrosine phosphorylation, we observed by immunoblotting a substantial decrease of EGF-induced EGFR degradation in the presence of GH. Fluorescence microscopy studies indicated that EGF-induced intracellular redistribution of an EGFR-cyan fluorescent protein chimera was markedly reduced by GH cotreatment, in support of the immunoblotting results. Notably, protection from EGF-induced degradation and inhibition of EGF-induced intracellular redistribution afforded by GH were both prevented by a MEK1 inhibitor, suggesting a role for GH-induced ERK activation in regulating the trafficking itinerary of the EGF-stimulated EGFR. Finally, we observed augmentation of early aspects of EGF signaling (EGF-induced ERK2 activation and EGF-induced Cbl tyrosine phosphorylation) by GH cotreatment; the GH effect on EGF-induced Cbl tyrosine phosphorylation was also prevented by MEK1 inhibition. These data indicate that GH, by activating ERKs, can modulate EGF-induced EGFR trafficking and signaling and expand our understanding of mechanisms of cross-talk between the GH and EGF signaling systems.  相似文献   

19.
Lahaye DH  Camps MG  Van Zoelen EJ 《FEBS letters》1999,445(2-3):256-260
The gamma-carboxyglutamic acid (Gla) content of several variants of human prothrombin has been measured by using capillary electrophoresis and laser-induced fluorescence (CE-LIF). Both plasma-derived prothrombin and recombinant prothrombin contain ten residues of Gla per molecule of protein. In contrast, a variant of human prothrombin (containing the second kringle domain of bovine prothrombin) was separated into two populations that differed in their Gla content. Direct measurement of the Gla content showed an association with the presence or absence of the calcium-dependent conformational change that is required for prothombinase function. Thus, the CE-LIF assay is useful in determining the carboxylation status of recombinant proteins.  相似文献   

20.
The tyrosine kinase activity of the epidermal growth factor receptor (EGFR-TK) was determined at varying poly-Glu6Ala3Tyr1 (GAT) or [Val5]-angiotensin II (AT) and constant ATP concentrations and vice versa. With GAT as substrate, double reciprocal plots intersected practically on the abscissa following EGFR-TK pre-activation with EGF, but below the abscissa without EGF pre-activation. The EGFR-TK inhibitors App(NH)p (5'-adenylyl-beta, gamma-imidodiphosphate) and ADP were competitive with ATP and noncompetitive with GAT. Four families of 1/v vs. 1/[ATP] plots, constructed at different fixed concentrations of ADP and a different constant concentration of GAT for each family, yielded Slope1/ATP replots which intersected to the left of the ordinate and below the abscissa. GAT and AT, as cosubstrates, were competitive with each other and noncompetitive with ATP; 1/v vs. 1/[GAT] or 1/[AT] plots were hyperbolic and reached horizontal asymptotes when v was expressed as the rate of common product formation. All data were subjected to computer best-fit analysis by a program written especially for this purpose. We conclude that (i) the EGFR-TK reaction follows a Sequential Bi-Bi Rapid Equilibrium Random mechanism, and (ii) EGF induces conformational changes in the EGFR-TK active center which lead to marked decreases in the apparent dissociation constants of both substrates of the kinase reaction and a concomitant increase in initial velocities and Vmax (apparent).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号