首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivores modify various ecological processes including interactions between native and exotic plants that may affect invasion success by the exotic plants. It is unknown whether different types of exotic herbivores have similar effects on native and exotic plants. Using two distinct data sets, we ran meta-analyses to compare exotic vertebrate and invertebrate herbivore preferences for, and effects on performance and population sizes of native and exotic plants. We found that exotic vertebrate herbivores have positive effects on exotic plant performance and population sizes, and no significant effects on native plants. Exotic invertebrates have significant negative effects on performance and population sizes of both exotic and native plants. Vertebrates prefer to feed on native plants relative to exotic plants, while invertebrates prefer the exotic plants to native plants. Thus the exotic vertebrate herbivores may aid invasiveness of exotic plants, in accordance with the invasional meltdown hypothesis, while exotic invertebrate herbivores probably have no net effect on invasion process of the exotic plants. Invertebrate herbivore preferences for exotic plants support the biotic resistance hypothesis, as the native plants probably resist the invertebrate herbivory. We also tested an evolutionary logic that posits that herbivores with similar evolutionary history as plants will affect the plants less negatively than plants with which they have not co-evolved. Our results indicate that there is no consistent pattern in effects of exotic vertebrate and invertebrate herbivores on exotic plants with or without which they have co-evolved.  相似文献   

2.
寄主植物对烟蚜药剂敏感性及相关酶活性的影响   总被引:1,自引:0,他引:1  
以甘蓝、烟草和桃树上的饲养的烟蚜Myzus persicae(Sulzer)种群为研究材料,分别测试了其对吡虫啉、丁硫克百威和氰戊菊酯这3种杀虫剂的敏感性。结果表明,桃树上的烟蚜种群敏感性最高,其次为烟草种群,甘蓝种群最低。测试了在3种不同寄主上饲养的烟蚜种群的羧酸酯酶、乙酰胆碱酯酶和谷光甘肽-s-转移酶的比活力,这3种酶均表现为甘蓝种群最高,其次为烟草种群,桃树种群最低。  相似文献   

3.
Abstract: A new category of plants that exhibit convergent evolution, namely "downy plants", is described and discussed here on the bais of natural selection. So-called snowball plants can be represented by Saussurea gossypiphora D. Don (Compositae), which has extremely dense trichomes on well-developed bracts that are tightly packed around floral buds. Plants whose morphology is similar to that of S. gossypiphora are found at high elevations of alpine zones in the Nepalese Himalayas, where temperatures are low and precipitation is high (frequent rain) in summer. Nonetheless, we noticed that plants with a morphology similar to that of Himalaya snowball plants are commonly distributed from temperature to Arctic zones, and are even found in Alaska where precipitation is very limited. Willows ( Salix spp.: Salicaceae) and deciduous magnolias (Magnoliaceae) are typical examples of such plants. Measurements of temperature inside and outside the inflorescences of Salix (pussy willow or catkin) and of Magnolia suggested that the pubescent bracts might play a role in keeping the interior of buds warm, but that the effect depends on light intensity. Our examination of such species led us to extend the concept of "snowball plants" to a larger group of plants, namely "downy plants", that are characterized by very dense trichomes on tightly packed bracts of inflorescences. Downy plants are thereby considered to represent a convergent adaptation that allows blooming at low temperatures.  相似文献   

4.
水平基因转移是不通过生殖而进行的遗传物质交流, 在原核生物和单细胞真核生物的进化中起着重要作用。然而, 水平基因转移在多细胞真核生物之间的发生频率以及对多细胞真核生物进化的影响尚不明确。近期的一些研究显示, 水平基因转移在高等植物之间以及高等植物和其它生物之间普遍存在。该文将对高等植物中已发现的一些水平基因转移现象进行综述, 并尝试解析植物之间水平基因转移可能的机制及其重要意义。  相似文献   

5.
据调查,广西拉沟自然保护区有维管束植物186科657属1078种(含变种、亚种),包括材用植物88种、药用植物358种、油脂植物36种、纤维植物70种、淀粉植物29种、杂果植物25种、芳香植物28种、栲胶植物39种、保健饮料植物12种、饲用植物49种、花卉观赏植物75种、水土保持植物23种、珍稀濒危植物43种等资源植物,保护植物资源迫切而重要,对此提出植物资源保护与可持续利用的建议。  相似文献   

6.
1. Datura wrightii Regel (Solanaceae) is polymorphic with regard to trichome type. Some plants are densely covered with short, non-glandular trichomes, whereas other plants in the same populations possess glandular trichomes that excrete a sticky exudate. The hypothesis that glandular trichomes enhance resistance to all small insect herbivores is evaluated.
2. Field censuses in four southern Californian D. wrightii plant populations revealed that glandular plants are indeed resistant to whitefly spp. (Homoptera: Aleyrodidae). Whiteflies are almost exclusively found on non-glandular plants. In contrast, Tupiocoris notatus (Distant) (Heteroptera: Miridae), another sap-sucking herbivore of similar body size, is found predominantly on plants with glandular trichomes.
3. Laboratory experiments showed that whiteflies are unable to colonize glandular D. wrightii phenotypes. After the whitefly adults had landed on the leaves of these plants, they were trapped in the exudate and died.
4. Tupiocoris notatus adults, on the other hand, laid significantly more eggs on glandular plants. The presence of the exudate was shown to be the cue that determined their choice of glandular plants.
5. In no-choice experiments, T. notatus nymphs reared on glandular plants had significantly higher survival rates and had shorter developmental periods than those raised on non-glandular plants. This, combined with the higher oviposition rates, resulted in higher T. notatus population growth rates on glandular plants than on non-glandular plants.
6. Glandular trichomes are not therefore a universal protection against small herbivores. Differences in distribution over the two plant types within the natural herbivore guild on D. wrightii may, among other selection pressures, contribute to the maintenance of the observed trichome polymorphism.  相似文献   

7.
Whereas prey are known to avoid habitats with their predators, it is less well established whether they are triggered to emigrate to new habitats when exposed to predators in their current habitat. We studied plant-to-plant dispersal of adult whiteflies in response to the presence of predatory mites on the plant on which the whiteflies were released. These predators attack whitefly eggs and crawlers, but not the adults, which can fly to other plants and can learn to avoid plants with predators. Being tiny and wingless, the predatory mites are slow dispersers compared to adult whiteflies. This offers the whiteflies the opportunity to escape from plants with predatory mites to plants without predators, thus avoiding predation of their offspring. To test for this escape response, a greenhouse experiment was carried out, where whiteflies were released on the first of a row of 5 cucumber plants, 0.6 m or 2 m apart, and predators either on the same plant, on the next plant, or nowhere (control). Adult whiteflies dispersed significantly faster from plants with predatory mites onto neighbouring plants when the plants were 0.6 m apart, but not when plants were 2 m apart. However, the final numbers of whiteflies that had successfully dispersed at the end of the experiments did not differ significantly for either of the two interplant distances. Overall, the proportion of whiteflies that did disperse was low, suggesting that adult whiteflies were apparently reluctant to disperse, even from plants with predators. Our results suggest that this reluctance increases with the distance between the plants, so most likely depends on the uncertainty to find a new plant. Thus, whiteflies do not always venture to fly even when they can easily bridge the distance to another plant.  相似文献   

8.
Many major biomes throughout the world are dominated by plants with clonal growth forms. While many recent studies have examined the effects of clonality on the growth of individual plants, relatively few studies have tested the community level effects of clonality as a function of environmental characteristics. By investigating six sand dune sites that have undergone different numbers of years of natural restoration constituting a succession sere, we quantified if the abundance and importance of clonal plants was related to successional age in the stressful environment of a semi-arid sand dune region in northeastern China. We expected that clonal plants would dominate at every stage of the succession sere. We also predicted that species diversity would decrease in later stages of the succession sere due to the extremely high proportion of clonal plants in the community. Our results showed that, through 45 years of succession, the total plant species richness and Shannon–Wiener diversity index continually increased. While the species number of clonal plants was consistently low during the succession, the importance of clonal plants increased gradually from none at 3 years to 49 % of the total, approximately equal to that of aclonal plants, at the 45-year site. Clonal plants with phalanx strategies were more important than guerillas at all ages in sand dune succession. At the beginning and early stages of sand dune succession, aclonal plants were more important than clonal plants, perhaps due to greater seed propagation. The distribution or arrangement of aclonal and clonal plants in the whole process of sand dune complemented each other. The results presented give new perceptions on the function of biodiversity in maintaining ecosystems.  相似文献   

9.
Research on plant tolerance to herbivory has been so far largely focussed on herbaceous plants partly due to the implicit assumption that woody plants are inherently lower in their compensatory potential as compared to herbs. However, tolerance to herbivory should be an important part of resistance of woody plants because their apparency to herbivory is high due to a large size and long life span, and their defence systems cannot completely exclude herbivory. Moreover, the longer life span, more complex modularity and higher sectorality of woody plants as compared to herbs imply that compensatory responses in woody plants may take several years to develop, and that consequences of herbivore damage to individual modules may profoundly differ from whole-plant responses. Therefore, short-term studies using branches or ramets as experimental units are likely to underestimate the tolerance of woody plants to herbivory. In addition, defoliation by insects (the most common type of herbivory experienced by woody plants) is less likely to release apical dominance and trigger biomass compensation than mammalian grazing on herbaceous plants. We conclude, therefore, that the seemingly different recovery potentials exhibited by woody and herbaceous plants are more likely to be the consequences of differences between the two types of plants in modular architecture, longevity and the type of herbivory they commonly experience rather than indications of inherent differences in compensatory ability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Abstract

We studied the effects of previous infestation of broad bean plants by pea aphids Acyrthosiphon pisum on the performance of conspecific nymphs on the plants and the involvement of jasmonic acid (JA)-related defenses. The time needed for newly emerged nymphs to become reproductive adults on broad bean plants previously infested by conspecifics (pre-infested plants) was significantly shorter than on uninfested (control) broad bean plants. The total numbers of nymphs produced by aphids on preinfested and control plants were not significantly different. Preinfested plants produced significantly less endogenous JA than that control plants did. To test the effect of JA decreases, we conducted experiments on the developmental duration of nymphs on broad bean plants treated with JA (JA-treated plants) before infestation. The time needed for nymphs to become reproductive adults on JA treated preinfested broad bean plants was not significantly different from that on JA-treated control plants. The results suggested a possible parental care by pea aphids: the adult aphids manipulated JA-related defenses in broad bean plants that had positive effects for their offspring.  相似文献   

11.
In this study, we observed that transgenic plants overexpressing NHX1 from different organisms grew well in the presence of 200 mM NaCl and also under water deprivation, while the wild-type plants exhibited chlorosis and growth inhibition. The photosynthesis activity of five kinds of transgenic plants was higher than the wild-type plants. The leaf water potential was less negative for wild-type than for transgenic plants. Moreover, these transgenic plants accumulated more Na+ and K+ in their leaf tissue than the wild-type plants. The toxic effects of Na+ accumulation in the cytosol are reduced by its sequestration into the vacuole. In addition, the thermal dissipation and ROS scavenging components increased in all transgenic Arabidopsis plants compared with that in non-transgenics. The salt tolerance of transgenic plants was passed on to the offsprings to the T5 generation. Furthermore, it should be noted that in transgenic Arabidopsis plants, overexpression of NHX1s from dicots showed higher salt and drought tolerance than that from wheat.  相似文献   

12.
The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.  相似文献   

13.
Root Formation in Ethylene-Insensitive Plants   总被引:2,自引:0,他引:2       下载免费PDF全文
Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.  相似文献   

14.
Documenting the floral biology of species throughout the Rubiaceae family is of particular interest since heterostyly and dioecy may have evolved more than once in this large family. Unfortunately many species in several tropical regions remain unstudied. The purpose of this paper is to describe the floral biology, the nature of self-incompatibility, morph ratios, and fecundity in natural populations of Gaertnera vaginata, a small tree endemic to the island of La Reunion in the Indian Ocean. Measurements of floral characters in populations across the entire distribution of this species showed that G. vaginata exhibits a reciprocal stigma height and anther height dimorphism characteristic of a distylous species. Pollen grain size and corolla tube length are consistently greater in short-styled plants and long-styled plants produce more pollen per flower. Controlled pollinations in a natural population showed that 25% of the short-styled plants gave at least one fruit on intramorph (illegitimate) pollination, whereas no long-styled plants set fruit on illegitimate pollination. In total, 19.4% of illegitimate pollinations produced fruit on short-styled plants. No self-pollination gave fruit on either morph and between-morph pollinations produced 92.2 and 92.8% for short and long-styled plants, respectively. Overall, short-styled plants were significantly more abundant than long-styled plants. Short-styled plants outnumbered long-styled plants in 16 of the 19 populations. In three of these populations the morph ratio was significantly different from 1:1. In two natural populations, fruit set was significantly higher on long-styled plants, although the number of seeds per fruit was not significantly different between the two morphs. The possible effect of variation in the strength of heteromorphic incompatibility on observed variation in morph abundance and the possible causes for the variation in fruit set are discussed.  相似文献   

15.
16.
Species that are endemic to isolated islands often differ dramatically in size from their mainland relatives, for reasons that are poorly understood. While decades of research have sought to better understand insular size changes in animals, far fewer studies have investigated insular size changes in plants. Here, I test for changes in plant stature, seed size and leaf area in a woody shrub (Alyxia ruscifolia, Apocynaceae), which inhabits both the continent of Australia, and Lord Howe Island, a subtropical island located 600 km off Australia's east coast. Results showed that island plants became reproductively mature at earlier stages of ontogeny than mainland plants, and that mature plants were taller on the mainland, providing a rare example of dwarfism in plants. Conversely, island plants produced larger seeds, which might make them more competitive as seedlings. Seeds produced by island plants were also less circular and more oblong in shape than their mainland counterparts, perhaps to facilitate their dispersal by avian frugivores with limited gape sizes. Lastly, island and mainland plants had similar average leaf sizes. However, juvenile plants on the mainland produced smaller, more needle‐shaped leaves with larger terminal spines relative to adult plants, which may help protect them against large, ground‐dwelling herbivores. On the other hand, island plants showed weaker ontogenetic shifts in leaf morphology in the absence of large herbivores. When interpreted jointly, results indicate that stature, seed size and leaf area are on separate evolutionary trajectories in A. ruscifolia, which appear to be determined by a complex suite of disparate selection pressures between Lord Howe Island and the mainland.  相似文献   

17.
Green wild plants (dirctly before flowering) and seeds of Hyoscyamus aureus were collected from natural habitat at Al Qalamon region in Syria. Seeds were surface sterilized and cultured in vitro, after 21 days from germination stem-derived callus was induced on two different nutrient media. Tropane alkaloids were extracted from wild plants and 30 days old in vitro plants and callus, and then analyzed using GC-MS. Genetic variation was also studied between the wild and in vitro plants and the callus culture lines using twenty ISSR markers. The results showed that there were significant variations in tropane alkaloids contents between the wild plants, the in vitro plants and the callus culture lines. The highest content of hyoscyamine was in callus on line A medium, but the highest content of scopolamine was in the wild plants. However, the lowest content of tropane alkaloids was in callus on line B medium. Also the ISSR analyses showed that there was genetic variation between the wild and in vitro plants and the callus culture lines.  相似文献   

18.
Summary A game theoretic model was developed for nectar secretion in animal-pollinated plants in order to examine how the total amount of resources allocated to flowers affects the spread of nectarless plants. It was assumed that pollinators concentrate on patches whose nectar rewards are relatively large compared to other patches and if pollinators visit a patch, they concentrate on the plants whose nectar rewards are relatively large compared to other plants in the patch. It was shown that plants are more likely to secrete nectar in populations where the total amount of resources allocated to flowers is large. It was also shown that strong interplant competition, strong interpatch competition and the nectar discrimination of the pollinators are also important factors for nectar secretion. However, if the total amount of resources allocated to flowers is sufficiently large, plants would secrete nectar even if competition is not very strong and nectar discrimination is not so precise.  相似文献   

19.
Short-term damage-induced increases in tobacco alkaloids protect plants   总被引:10,自引:0,他引:10  
Ian T. Baldwin 《Oecologia》1988,75(3):367-370
Summary Leaf damage significantly increases the alkaloid content in undamaged leaves on damaged field-grown wild tobacco plants. Although field-grown pot-bound plants fail to exhibit the same damage-induced increase in alkaloid content, the ability to respond to leaf damage is restored 6 days after removing plants from their pots. Freshly hatched Manduca sexta larvae reared individually in the laboratory on the high-alkaloid foliage of damaged plants released from their pots gain less weight and eat less (57.2% and 45.7% of controls, respectively) than larvae fed low-alkaloid foliage from undamaged released plants. Moreover, larvae grow equally well on the foliage of damaged and undamaged pot-bound plants. The higher chlorophyll contents characteristic of damaged released plants did not negate the effects of the increased alkaloid contents on larval growth. Undamaged leaves from undamaged field-grown plants stem-fed nicotine solutions had elevated leaf nicotine and nornicotine contents. Larvae reared on these artificially induced leaves gain only 38.5% of the weight gained by larvae reared on low-alkaloid foliage. These results demonstrate that damage-induced increases in leaf alkaloids protect induced foliage from attack and are sufficient to explain the decreased growth of caterpillars on the foliage of damaged plants.  相似文献   

20.
不同植物对高寒草场主要杂草箭叶橐吾的化感作用   总被引:6,自引:0,他引:6  
张红  马瑞君  王乃亮  李刚 《西北植物学报》2006,26(11):2307-2311
用13科31种植物地上部分的水浸液(0.05 g DW.mL-1)对高寒草场主要杂草箭叶橐吾(Ligularia sagi-tata)和同域牧草垂穗披碱草(Elymus nutans)进行种子萌发实验,旨在筛选能够抑制箭叶橐吾的植物种类。结果表明:有23种供体材料对箭叶橐吾种子萌发具较强抑制作用,并降低了萌发指数(M<-0.50);有9种供体植物显著抑制箭叶橐吾,同时对牧草的伤害较少甚至有促进作用。综合比较对2种植物的综合化感效应指数(M)差异,毛茛(Ranunculus japonicus)、高乌头(Aconitum sinomontanum)、五爪金龙(Ipomoea cairica)、露蕊乌头(Aconitumgymnandrum)和乳白香青(Anaphalis lactea)作用效果显著(其M差值分别是:-0.87、-0.82、-0.71、-0.68和-0.62),这5种植物有望开发新型植物源除草剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号