首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that bolus intravenous administration of tumor necrosis factor (TNF) to normal rats results in a rapid (within 90 min) stimulation of hepatic fatty acid synthesis, which is sustained for 17 hr. We now demonstrate that TNF stimulates fatty acid synthesis by several mechanisms. Fatty acid synthetase and acetyl-CoA carboxylase (measured after maximal stimulation by citrate) were not higher in livers from animals that had been treated with TNF 90 min before study compared to controls. In contrast, 16 hr after treatment with TNF, fatty acid synthetase was slightly elevated (35%) while acetyl-CoA carboxylase was increased by 58%. To explain the early rise in the hepatic synthesis of fatty acids, we examined the regulation of acetyl-CoA carboxylase. The acute increase in fatty acid synthesis was not due to activation of acetyl-CoA carboxylase by change in its phosphorylation state (as calculated by the ratio of activity in the absence and presence of 2 mM citrate). However, hepatic levels of citrate, an allosteric activator of acetyl-CoA carboxylase, were significantly elevated (51%) within 90 min of TNF treatment. TNF also induces an acute increase (within 90 min) in the plasma levels of free fatty acids. However, hepatic levels of fatty acyl-CoA, which can inhibit acetyl-CoA carboxylase, did not rise 90 min following TNF treatment and were 35% lower than in control livers by 16 hr after TNF. These data suggest that TNF acutely regulates hepatic fatty acid synthesis in vivo by raising hepatic levels of citrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Primary cultures of adult rat hepatocytes were utilized to ascertain the impact of free fatty acids on the insulin plus dexamethasone induction of acetyl-CoA carboxylase. Lipogenesis was induced threefold by the combination of insulin and dexamethasone. The rise in fatty acid synthesis was accompanied by a comparable increase in the rate-determining enzyme acetyl-CoA carboxylase. Dexamethasone was required for the insulin induction of acetyl-CoA carboxylase. Under the permissive action of glucocorticoid, 10(-7) M insulin maximally increased enzyme activity. Half-maximum stimulation occurred with 5 X 10(-9) M insulin. Media containing 0.2 mM palmitate, oleate, linoleate, arachidonate, or docosahexaenoate significantly suppressed the hormonal induction of acetyl-CoA carboxylase. The extent of suppression was only 30-35% and did not vary with chain length or degree of unsaturation. Carboxylase activity was not suppressed further by raising the concentration of linoleate to 0.5 mM; however, 0.5 mM palmitate depleted the cells of ATP and abolished acetyl-CoA carboxylase activity. Therefore, based upon the inhibitory characteristics of the various fatty acids and the lack of a concentration dependency of the fatty acid inhibition, it would appear that fatty acid inhibition of the induction of acetyl-CoA carboxylase activity may not be a direct, physiological regulatory mechanism.  相似文献   

3.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

4.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

5.
Administration of triamcinolone or dexamethasone to rats led to a prompt, marked and persistent rise in liver acetyl-CoA carboxylase activity. The activity of fatty acid synthetase increased to a lesser extent and after a more prolonged glucocorticoid treatment, whereas the changes in that of NADP-malate dehydrogenase and ATP-citrate lyase were not appreciable. The overall channeling of [1-14-C]acetyl-CoA to fatty acids was enhanced. The triamcinolone effect on acetyl-CoA carboxylase activity appeared to be dependent on the coincident hyperinsulinemia since it was not obtained in alloxan-diabetic rats, whereas the alanine-aminotransferase-inducing effect of this hormone was additive to that of insulin deficiency. In adipose tissue triamcinolone treatment caused a reduction in the activity of all lipogenesis enzymes and blunted their response to insulin administration. The antagonism of glucocorticoids toward insulin, selectively modulating the responses of the insulin-sensitive enzymes in liver and adipose tissue is discussed. The rise in hepatic lipogenic capacity, through the retention of the ability of insulin to induce acetyl-CoA carboxylase, may be physiologically important in restraining the ketogenesis from acetyl-CoA despite the increased fat utilization during glucocorticoid excess.  相似文献   

6.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

7.
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.  相似文献   

8.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

9.
Effect of citrate on acetyl-CoA incorporation into mevalonic acid, sterols and fatty acids after preliminary incubation of rat liver extracts under conditions optimal for acetyl-CoA carboxylase activation, was studied. 30 min preincubation with the citrate at 37 degrees C results in a 2--3-fold stimulation of the mevalonic acid biosynthesis from acetyl-CoA in the microsomal and soluble (140 000 g) fraction, and in that of sterols precipitated by digitonin or isolated by TLC in the mitochondria--free fraction. 2-14C-malonyl-CoA incorporation into the mevalonic acid and sterols and biosynthesis of sterols from 2-14C-mevalonic acid were not stimulated under those conditions. A correlation was shown to exist between the activity of acetyl-CoA carboxylase and the rate of acetyl-CoA incorporation into mevalonate and sterols; the activity of beta-hydroxy-beta-methylglutaryl-CoA reductase, limiting the rate of the sterol biosynthesis, was not changed. The stimulating effect of citrate was found to depend on the concentration of acetyl-CoA and NADPH in the medium. The data obtained suggest that the mevalonic acid biosynthesis in rat liver may occur in the presence of acetyl-CoA carboxylase through the formation of malonyl-CoA.  相似文献   

10.
Data are presented which indicate that the transition of acetyl-CoA carboxylase between the active polymeric and inactive protomeric conformations defined for the purified enzyme also occurs with the enzyme in vivo, depends upon the nutritional state of the animal, and is an important physiological phenomenon in the acute regulation of liver fatty acid synthesis. This conclusion utilized the observation that the protomeric form of purified acetyl-CoA carboxylase is inactivated by the binding of avidin to the biotinyl prosthetic group; the catalytically active filamentous form of the enzyme is resistant to avidin. Acetyl-CoA carboxylase activity was 75% avidin-resistant (polymeric) in the liver of meal-fed rats that had completed the consumption of a high glucose meal. This avidin resistance gradually decreased to 20% during the 21-h interval between meals. Peak resistance to avidin of liver carboxylase was attained within 30 min of initiating meal ingestion. The rise in carboxylase resistance to avidin could not be mimicked by insulin injection alone, but could be greatly attenuated by the addition of fat to the glucose meal. The amount of avidin-resistant acetyl-CoA carboxylase was closely associated with the concentration of hepatic malonyl-CoA and the subsequent rate of fatty acid synthesis.  相似文献   

11.
Malonyl-CoA decarboxylase from the uropygial gland of goose decarboxylated (R,S)-methylmalonyl-CoA at a slow rate and introduced 3H from [3H]2O into the resulting propionyl-CoA. Carboxylation of this labeled propionyl-CoA by propionyl-CoA carboxylase from pig heart and acetyl-CoA carboxylase from the uropygial gland completely removed 3H. Repeated treatment of (R,S)-[methyl-14C]methylmalonyl-CoA with the decarboxylase converted 50% of the substrate into propionyl-CoA, whereas (S)-methylmalonyl-CoA, generated by both carboxylases, was completely decarboxylated. Radioactive (R)- (S), and (R,S)-methylmalonyl-CoA were equally incorporated into fatty acids by fatty acid synthetase from the uropygial gland. The residual methylmalonyl-CoA remaining after fatty acid synthetase reaction on (R,S)-methylmalonyl-CoA was also racemic. These results show that: (a) the decarboxylase is stereospecific, (b) replacement of the carboxyl group by hydrogen occurs with retention of configuration, (c) acetyl-CoA carboxylase of the uropygial gland generates (S)-methylmalonyl-CoA from propionyl-CoA, and (d) fatty acid synthetase is not stereospecific for methylmalonyl-CoA.  相似文献   

12.
Poly(A)+ RNA from lactating rat mammary glands was fractionated according to size by isokinetic sucrose gradient centrifugation to obtain a fraction enriched for acetyl-CoA carboxylase. In vitro translation of this RNA preparation yielded apparent full-length acetyl-CoA carboxylase with a molecular weight of 260,000. The synthesized protein was identified as acetyl-CoA carboxylase by specific immunoprecipitation. Tests with antiserum to fatty acid synthetase, revealed that the fractions containing acetyl-CoA carboxylase mRNA also contained mRNA for fatty acid synthetase; both of these mRNAs were approximately 10 kb. Fatty acid synthetase with a molecular weight of 250,000 was synthesized. Using an in vitro rabbit reticulocyte lysate translation system, we have shown that the amount of translatable acetyl-CoA carboxylase mRNA increases during lactation. On the fifth day postpartum the level of translatable acetyl-CoA carboxylase mRNA increased to a peak level seven times that on the day of parturition.  相似文献   

13.
Initiation of lipogenic enzyme activities in rat mammary glands.   总被引:13,自引:3,他引:10       下载免费PDF全文
The activities of acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthetase remained low until parturition at 22 days of gestation and increased significantly within 1 day post partum. Administration of progesterone on days 20 and 21 and at parturition abolished the increases for at least 48 h after parturition. Removal of the pups of normal rats prevented the increases in activities of acetyl-CoA carboxylase and ATP citrate-lyase, but not of fatty acid synthetase, and administration of prolactin corticosterone or insulin did not stimulate activity. Tissue from suckled glands in which the ducts had been ligated at parturition showed no increase in the activities of acetyl-CoA carboxylase and ATP citrate-lyase within 24 h, whereas fatty acid synthetase activity was similar to that in the sham-operated contralateral glands. Foetoplacentectomy on day 18 increased the activity of fatty acid synthetase but not of acetyl-CoA carboxylase and ATP citrate-lyase; suckling of these dams by foster pups increased both acetyl-CoA carboxylase and ATP citrate-lyase.  相似文献   

14.
B Quistorff  N Katz  L A Witters 《Enzyme》1992,46(1-3):59-71
Lipid metabolism appears to be less zonated than carbohydrate and protein metabolism. Studies on the zonation of lipid metabolism have been centered in particular on fatty acid synthesis which, according to the concept of metabolic zonation, should be a predominantly perivenous process while fatty acid oxidation should be periportal. There are, however, conflicting data on the activity gradients of lipogenic enzymes as well as measurements of actual synthesis of fatty acid and very low density lipoprotein. Data obtained by microdissection show a 1.5- to 2-fold higher activity of acetyl-CoA carboxylase and citrate lyase in the perivenous zone in agreement with measurements of the actual rate of fatty acid synthesis in preparations of hepatocyte, enriched in periportal or perivenous cells. On the other hand, results obtained with the dual-digitonin-pulse perfusion technique demonstrate the opposite gradient in the form of a 2- to 3-fold higher specific activity of acetyl-CoA carboxylase in the periportal zone based on measurements of the acetyl-CoA carboxylase protein proper. This specific activity gradient, which applies to male and not female rats, disappears almost completely in the fasted-refed animal, were lipogenesis is strongly induced. In this review we attempt to rationalize these discrepancies in the results as methodological differences which in particular apply to the following parameters: (1) expression of results (reference substance); (2) selectivity of zonal sampling, and (3) differences in methodology of acetyl-CoA carboxylase measurements. It is concluded that these factors could account for the discrepancies, but further studies, in particular on the zonation acetyl-CoA carboxylase mRNA, are required in order to further understand the zonation of lipid metabolism and its possible role in the metabolic regulation of the liver.  相似文献   

15.
The long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase and of fatty acid and sterol synthesis was studied in C-6 glial cells in culture. When theophylline (10(-3) M) was added to the culture medium of these cells, rates of lipid synthesis from acetate and activities of synthetase and carboxylase became distinctly lower than in cells that were untreated. This effect appeared after approximately 12 h, and after 48 h enzymatic activities were reduced approx. 2-fold and rates of lipid synthesis from acetate 3- to 4-fold. The likelihood that the decrease in fatty acid synthesis from acetate was caused by the decrease in activities of fatty acid synthetase and acetyl-CoA carboxylase was established by several observations. These indicated that the locus of the effect probably did not reside at the level of acetate uptake into the cell, alterations in acetate pool sizes or conversion of acetate to acetyl-CoA. Moreover, de novo fatty acid synthesis was found to be the predominant pathway in these glial cells, whether treated with theophylline or not. The mechanism of the effect of theophylline on fatty acid synthetase was shown by immunochemical techniques to involve an alteration in content of enzyme rather than in catalytic efficiency. The change in content of fatty acid synthetase was shown by isotopic-immunochemical experiments to involve a decrease in synthesis of the enzyme. The mechanism whereby theophylline leads to a decrease in lipogenesis and in the synthesis of fatty acid synthetase may not be mediated entirely by inhibition of phosphodiesterase and an increase in cyclic AMP levels, because dibutyryl cyclic AMP (10(-3) M) only partially reproduced the effect.  相似文献   

16.
Malonyl-CoA is an essential precursor for fatty acid biosynthesis that is generated from the carboxylation of acetyl-CoA. In this work, a gene coding for acetyl-CoA carboxylase (ACC) was isolated from an oleaginous fungus, Mucor rouxii. According to the amino acid sequence homology and the conserved structural organization of the biotin carboxylase, biotin carboxyl carrier protein, and carboxyl transferase domains, the cloned gene was characterized as a multi-domain ACC1 protein. Interestingly, a 40% increase in the total fatty acid content of the non-oleaginous yeast Hansenula polymorpha was achieved by overexpressing the M. rouxii ACC1. This result demonstrated a significant improvement in the production of fatty acids through genetic modification in this yeast strain.  相似文献   

17.
The suborder Corynebacterianeae comprises bacteria like Mycobacterium tuberculosis and Corynebacterium glutamicum, and these bacteria contain in addition to the linear fatty acids, unique alpha-branched beta-hydroxy fatty acids, called mycolic acids. Whereas acetyl-coenzyme A (CoA) carboxylase activity is required to provide malonyl-CoA for fatty acid synthesis, a new type of carboxylase is apparently additionally present in these bacteria. It activates the alpha-carbon of a linear fatty acid by carboxylation, thus enabling its decarboxylative condensation with a second fatty acid to afford mycolic acid synthesis. We now show that the acetyl-CoA carboxylase of C. glutamicum consists of the biotinylated alpha-subunit AccBC, the beta-subunit AccD1, and the small peptide AccE of 8.9 kDa, forming an active complex of approximately 812,000 Da. The carboxylase involved in mycolic acid synthesis is made up of the two highly similar beta-subunits AccD2 and AccD3 and of AccBC and AccE, the latter two identical to the subunits of the acetyl-CoA carboxylase complex. Since AccD2 and AccD3 orthologues are present in all Corynebacterianeae, these polypeptides are vital for mycolic acid synthesis forming the unique hydrophobic outer layer of these bacteria, and we speculate that the two beta-subunits present serve to lend specificity to this unique large multienzyme complex.  相似文献   

18.
A human breast cell line has been identified which contains prodigious levels of fatty acid synthetase but has a very low capacity for lipogenesis from glucose, lactate or acetate. The fatty acid synthetase from this cell line appears to be structurally and functionally normal, and the low lipogenic capacity of the cells appears to be due to the low activities of other lipogenic enzymes, notably acetyl-CoA carboxylase. Thus, the SKBr3 cell line appears to lack the long-term coordinated control of acetyl-CoA carboxylase and fatty acid synthetase commonly observed in normal lipogenic tissues.  相似文献   

19.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

20.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号