首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autocleavage assay and peptide-based cleavage assay were used to study the substrate specificity of 3CL protease from the severe acute respiratory syndrome coronavirus. It was found that the recognition between the enzyme and its substrates involved many positions in the substrate, at least including residues from P4 to P2'. The deletion of either P4 or P2' residue in the substrate would decrease its cleavage efficiency dramatically. In contrast to the previous suggestion that only small residues in substrate could be accommodated to the S 1' subsite, we have found that bulky residues such as Tyr and Trp were also acceptable. In addition, based on both peptide-based assay and autocleavage assay, Ile at the PI' position could not be hydrolyzed, but the mutant L27A could hydrolyze the Ile peptide fragment. It suggested that there was a stereo hindrance between the S 1' subsite and the side chain of Ile in the substrate. All 20 amino acids except Pro could be the residue at the P2' position in the substrate, but the cleavage efficiencies were clearly different. The specificity information of the enzyme is helpful for potent anti-virus inhibitor design and useful for other coronavirus studies.  相似文献   

2.
Lai CC  Jou MJ  Huang SY  Li SW  Wan L  Tsai FJ  Lin CW 《Proteomics》2007,7(9):1446-1460
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS CoV) is an important issue for treatment and prevention of SARS. Previously, SARS CoV 3C-like protease (3CLpro) has been demonstrated to induce apoptosis via the activation of caspase-3 and caspase-9 (Lin, C. W., Lin, K. H., Hsieh, T. H., Shiu, S. Y. et al., FEMS Immunol. Med. Microbiol. 2006, 46, 375-380). In this study, proteome analysis of the human promonocyte HL-CZ cells expressing SARS CoV 3CLpro was performed using 2-DE and nanoscale capillary LC/ESI quadrupole-TOF MS. Functional classification of identified up-regulated proteins indicated that protein metabolism and modification, particularly in the ubiquitin proteasome pathway, was the main biological process occurring in SARS CoV 3CLpro-expressing cells. Thirty-six percent of identified up-regulated proteins were located in the mitochondria, including apoptosis-inducing factor, ATP synthase beta chain and cytochrome c oxidase. Interestingly, heat shock cognate 71-kDa protein (HSP70), which antagonizes apoptosis-inducing factor was shown to down-regulate and had a 5.29-fold decrease. In addition, confocal image analysis has shown release of mitochondrial apoptogenic apoptosis-inducing factor and cytochrome c into the cytosol. Our results revealed that SARS CoV 3CLpro could be considered to induce mitochondrial-mediated apoptosis. The study provides system-level insights into the interaction of SARS CoV 3CLpro with host cells, which will be helpful in elucidating the molecular basis of SARS CoV pathogenesis.  相似文献   

3.
The 3C-like protease (3CLpro) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Structure based virtual screening of 308 307 chemical compounds was performed using the computation tool Autodock 3.0.5 on a WISDOM Production Environment. The top 1468 ranked compounds with free binding energy ranging from −14.0 to −17.09 kcal mol−1 were selected to check the hydrogen bond interaction with amino acid residues in the active site of 3CLpro. Fifty-three compounds from 35 main groups were tested in an in vitro assay for inhibition of 3CLpro expressed by Escherichia coli. Seven of the 53 compounds were selected; their IC50 ranged from 38.57 ± 2.41 to 101.38 ± 3.27 μM. Two strong 3CLpro inhibitors were further identified as competitive inhibitors of 3CLpro with Ki values of 9.11 ± 1.6 and 9.93 ± 0.44 μM. Hydrophobic and hydrogen bond interactions of compound with amino acid residues in the active site of 3CLpro were also identified.  相似文献   

4.
Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.  相似文献   

5.
3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been demonstrated to be a key target for drug design against SARS. The interaction between SARS coronavirus 3C-like (3CL) proteinase and an octapeptide interface inhibitor was studied by affinity capillary electrophoresis (ACE). The binding constants were estimated by the change of migration time of the analytes in the buffer solution containing different concentrations of SARS 3CL proteinase. The results showed that SARS 3CL proteinase was able to complex with the octapeptide competitively, with binding constants of 2.44 x 10(4) M(-1) at 20 degrees C and 2.11 x 10(4)M(-1) at 37 degrees C. In addition, the thermodynamic parameters deduced reveal that hydrophobic interaction might play major roles, along with electrostatic force, in the binding process. The ACE method used here could be developed to be an effective and simple way of applying large-scale drug screening and evaluation.  相似文献   

6.
A non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold was evaluated as a novel inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CLpro). The decahydroisoquinolin scaffold has been demonstrated to be an effective hydrophobic center to interact with S2 site of SARS 3CLpro, but the lack of interactions at S3 to S4 site is thought to be a major reason for the moderate inhibitory activity. In this study, the effects of an additional non-prime site substituent on the scaffold as well as effects of several warheads are evaluated. For the introduction of a desired non-prime site substituent, amino functionality was introduced on the decahydroisoquinolin scaffold, and the scaffold was constructed by Pd(II) catalyzed diastereoselective ring formation. The synthesized decahydroisoquinolin inhibitors showed about 2.4 times potent inhibitory activities for SARS 3CLpro when combined with a non-prime site substituent. The present results indicated not only the expected additional interactions with the SARS 3CLpro but also the possibility of new inhibitors containing a fused-ring system as a hydrophobic scaffold and a new warhead such as thioacetal.  相似文献   

7.
The severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is one of the opening reading frames in the viral genome with no homologue in other known coronaviruses. Expression of the 3a protein has been demonstrated during both in vitro and in vivo infection. Here we present biochemical data to show that 3a is a novel coronavirus structural protein. 3a was detected in virions purified from SARS-CoV infected Vero E6 cells although two truncated products were present predominantly instead of the full-length protein. In Vero E6 cells transiently transfected with a cDNA construct for expressing 3a, a similar cleavage was observed. Furthermore, co-expression of 3a, membrane and envelope proteins using the baculovirus system showed that both full-length and truncated 3a can be assembled into virus-like particles. This is the first report that demonstrated the incorporation of 3a into virion and showed that the SARS-CoV encodes a novel coronavirus structural protein.  相似文献   

8.
Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai’s cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity.  相似文献   

9.
Unlike 3C protease, the severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CLpro) is only enzymatically active as a homodimer and its catalysis is under extensive regulation by the unique extra domain. Despite intense studies, two puzzles still remain: (i) how the dimer-monomer switch is controlled and (ii) why dimerization is absolutely required for catalysis. Here we report the monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 A. Detailed analysis reveals that Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimer to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 3(10)-helix from an active-site loop. Remarkably, dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis.  相似文献   

10.
Severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CL(pro)) mediates extensive proteolytic processing of replicase polyproteins, and is considered a promising target for anti-SARS drug development. Here we present a rapid and high-throughput screening method to study the substrate specificity of SARS-CoV 3CL(pro). Six target amino acid positions flanking the SARS-CoV 3CL(pro) cleavage site were investigated. Each batch of mixed peptide substrates with defined amino acid substitutions at the target amino acid position was synthesized via the "cartridge replacement" approach and was subjected to enzymatic cleavage by recombinant SARS-CoV 3CL(pro). Susceptibility of each peptide substrate to SARS-CoV 3CL(pro) cleavage was monitored simultaneously by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CL(pro)-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CL(pro) that is facing the P1' position is suggested to be occupied by acidic amino acids, thus the P1' position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or beta-branching amino acids in P3 and P2' positions may also hinder the binding of SARS-CoV 3CL(pro). This study generates a comprehensive overview of SARS-CoV 3CL(pro) substrate specificity, which serves as the design basis of synthetic peptide-based SARS-CoV 3CL(pro) inhibitors. Our experimental approach is believed to be widely applicable for investigating the substrate specificity of other proteases in a rapid and high-throughput manner that is compatible for future automated analysis.  相似文献   

11.
Synthesis and evaluation of new scaffold phenylisoserine derivatives connected with the essential functional groups against SARS CoV 3CL protease are described. The phenylisoserine backbone was found by simulation on GOLD software and the structure activity relationship study of phenylisoserine derivatives gave SK80 with an IC50 value of 43 μM against SARS CoV 3CL R188I mutant protease.  相似文献   

12.
The severe acute respiratory syndrome (SARS) virus depends on a chymotrypsin-like cysteine proteinase (3CLpro) to process the translated polyproteins to functional viral proteins. This enzyme is a target for the design of potential anti-SARS drugs. A series of ketones and corresponding mono- and di-fluoro ketones having two or three aromatic rings were synthesized as possible reversible inhibitors of SARS 3CLpro. The design was based on previously established potent inhibition of the enzyme by oxa analogues (esters), which also act as substrates. Structure-activity relationships and modeling studies indicate that three aromatic rings, including a 5-bromopyridin-3-yl moiety, are key features for good inhibition of SARS 3CLpro. Compound 11d, 2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)ethanone and its α-monofluorinated analogue 12d, gave the best reversible inhibition with IC50 values of 13 μM and 28 μM, respectively. In contrast to inhibitors having two aromatic rings, α-fluorination of compounds with three rings unexpectedly decreased the inhibitory activity.  相似文献   

13.
Severe acute respiratory syndrome (SARS) coronavirus (SARS‐CoV) papain‐like protease (PLpro), a deubiquitinating enzyme, demonstrates inactivation of interferon (IFN) regulatory factor 3 and NF‐κB, reduction of IFN induction, and suppression of type I IFN signaling pathway. This study investigates cytokine expression and proteomic change induced by SARS‐CoV PLpro in human promonocyte cells. PLpro significantly increased TGF‐β1 mRNA expression (greater than fourfold) and protein production (greater than threefold). Proteomic analysis, Western blot, and quantitative real‐time PCR assays indicated PLpro upregulating TGF‐β1‐associated genes: HSP27, protein disulfide isomerase A3 precursor, glial fibrillary acidic protein, vimentin, retinal dehydrogenase 2, and glutathione transferase omega‐1. PLpro‐activated ubiquitin proteasome pathway via upregulation of ubiquitin‐conjugating enzyme E2–25k and proteasome subunit alpha type 5. Proteasome inhibitor MG‐132 significantly reduced expression of TGF‐β1 and vimentin. PLpro upregulated HSP27, linking with activation of p38 MAPK and ERK1/2 signaling. Treatment with SB203580 and U0126 reduced PLpro‐induced expression of TGF‐β1, vimentin, and type I collagen. Results point to SARS‐CoV PLpro triggering TGF‐β1 production via ubiquitin proteasome, p38 MAPK, and ERK1/2‐mediated signaling.  相似文献   

14.
In this study, we aimed to evaluate the diagnostic value of serological assay for SARS-CoV-2. A newly-developed ELISA assay for IgM and IgG antibodies against N protein of SARS-CoV-2 was used to screen the serums of 238 admitted hospital patients between February 6 and February 14, 2020 with confirmed or suspected SARS-CoV-2. SARS-CoV-2 RNA was detected on pharyngeal swab specimens using real time RT-PCR. 194 (81.5%) of the serums were detected to be antibody (IgM and/or IgG) positive, significantly higher than the positive rate of viral RNA (64.3%). There was no difference in the positive rate of antibodies between the confirmed patients (83.0%, 127/153) and the suspected patients (78.8%, 67/85), whose nucleic acid tests were negative. The antibody positive rates were very low in the first five days after initial onset of symptoms, and then rapidly increased as the disease progressed. After 10 days, the antibody positive rates jumped from below 50% to over 80%. However, the positive rates of viral RNA maintained above 60% in the first 11 days after initial onset of symptoms, and then rapidly decreased. Overall, the suspected patients were most likely infected by SARS-CoV-2. Before the 11th day after initial onset of symptoms, nucleic acid test is key for confirmation of viral infection. The combination of serological assay can greatly improve the diagnostic efficacy. After the 11th day post-disease onset, the diagnosis for viral infection should be majorly dependent on serological assay.  相似文献   

15.
The non-structural proteins (nsp or replicase proteins) of coronaviruses are relatively conserved and can be effective targets for drugs. Few studies have been conducted into the function of the severe acute respiratory syndrome coronavirus (SARS-CoV) nsp5. In this study, bioinformatics methods were employed to predict the secondary structure and construct 3-D models of the SARS-CoV GD strain nsp5. Sequencing and sequential comparison was performed to analyze the mutation trend of the polymerase nsp5 gene during the epidemic process using a nucleotide-nucleotide basic local alignment search tool (BLASTN) and a protein-protein basic local alignment search tool (BLASTP). The results indicated that the nsp5 gene was steady during the epidemic process and the protein was homologous with other coronavirus nsp5 proteins. The protein encoded by the nsp5 gene was expressed in COS-7 cells and analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This study provided the foundation for further exploration of the protein‘s biological function, and contributed to the search for anti-SARS-CoV drugs.  相似文献   

16.
The West Nile Virus (WNV) has been a worldwide epidemic since the early 1990s. Currently there are no therapeutic treatments for WNV infections. One particular avenue of treatment is inhibition of the NS2B-NS3 protease, an enzyme that is crucial for WNV replication. In our effort to increase the number of NS2B-NS3 protease inhibitors, we report a novel FRET-based high throughput assay for the discovery of WNV NS2B-NS3 protease inhibitors. For this assay, a FRET-based peptide substrate was synthesized and kinetically characterized with the NS2B-NS3 protease. The new substrate exhibits a Km of 3.35 ± 0.31 μM, a kcat of 0.0717 ± 0.0016 s?1 and a kcat/Km of 21,400 ± 2000 M?1 s?1.  相似文献   

17.
A novel fish muscle serine protease named muscle soluble serine protease (MSSP) was purified from the soluble fraction of lizard fish (Saurida undosquamis: Synodontidae) muscle by ammonium sulfate fractionation followed by four steps of column chromatographies. In native-PAGE, the purified enzyme appeared as a single band with an estimated mol. mass of approximately 380 kDa by gel filtration. In SDS-PAGE under reducing conditions, the purified enzyme migrated as two protein bands at 110 and 100 kDa, named subunits A and B, respectively. The 20 residues of N-terminal amino acid sequence of subunit B showed 70% of homology to β-chain of carp α2-macroglobulin-1. Moreover, both subunits A and B showed immunoreactivity with anti carp α2-macroglobulin antibody. Purified MSSP was inactivated by Pefabloc SC, aprotinin, benzamidine and TLCK, but not by α1-antitrypsin. After acid treatment (pH 2, 24 h), however, the enzyme activity eluted at 14 kDa from Sephacryl S-200 carried out under acidic conditions was inhibited by α1-antitrypsin. Lizard fish MSSP most rapidly hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Gln-Arg-Arg-MCA, but did not hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA and Suc-Ala-Ala-Pro-Phe-MCA, and was not suppressed either by E-64, pepstatin A and ethylenediaminetetraacetic acid (EDTA). These results indicate that the purified MSSP is a serine protease complexed with α2-macroglobulin, and the entrapped protease was dissociated by the acid treatment. Purified and free MSSPs were most active at pH 10.0 and 9.0, respectively. Purified MSSP degraded myofibrillar proteins and casein but time courses of degradation of these substrates by the enzyme differed.  相似文献   

18.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel SARS-associated coronavirus (SARS-CoV). The clinical characteristics are high fever, rapidly progressive diffuse pneumonitis and respiratory distress. It is highly infectious through intimate contact or direct contact with infectious body fluids. Outbreaks within communities and hospitals have been reported. Development of rapid and reliable diagnostic tools is urgently needed. We developed an immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), using whole virus antigen of SARS-CoV. Eighty-six serum samples collected from patients who were hospitalized for other causes were examined to determine the cut-off O.D. value. The cut-off O.D. value was defined as 0.175 by calculating the mean O.D. value of the 86 sera plus 3 standard deviations. To determine the sensitivity and specificity of the ELISA, 56 positive sera and 204 negative sera were tested. The sensitivity was 96.4% and the specificity was 100%. The results suggest that the IgG ELISA using whole virus antigen of SARS-CoV has a high sensitivity and specificity in detecting SARS IgG antibodies. This IgG ELISA is a powerful tool for serodiagnosis of SARS.  相似文献   

19.
SARS-CoV 3C-like protease (3CL(pro)) is an attractive target for anti-severe acute respiratory syndrome (SARS) drug discovery, and its dimerization has been extensively proved to be indispensable for enzymatic activity. However, the reason why the dissociated monomer is inactive still remains unclear due to the absence of the monomer structure. In this study, we showed that mutation of the dimer-interface residue Gly-11 to alanine entirely abolished the activity of SARS-CoV 3CL(pro). Subsequently, we determined the crystal structure of this mutant and discovered a complete crystallographic dimer dissociation of SARS-CoV 3CL(pro). The mutation might shorten the alpha-helix A' of domain I and cause a mis-oriented N-terminal finger that could not correctly squeeze into the pocket of another monomer during dimerization, thus destabilizing the dimer structure. Several structural features essential for catalysis and substrate recognition are severely impaired in the G11A monomer. Moreover, domain III rotates dramatically against the chymotrypsin fold compared with the dimer, from which we proposed a putative dimerization model for SARS-CoV 3CL(pro). As the first reported monomer structure for SARS-CoV 3CL(pro), the crystal structure of G11A mutant might provide insight into the dimerization mechanism of the protease and supply direct structural evidence for the incompetence of the dissociated monomer.  相似文献   

20.
Severe acute respiratory syndrome (SARS) is characterized by rapidly progressing respiratory failure resembling acute/adult respiratory distress syndrome (ARDS) associated with uncontrolled inflammatory responses. Here, we demonstrated that, among five accessory proteins of SARS coronavirus (SARS-CoV) tested, 3a/X1 and 7a/X4 were capable of activating nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK), and significantly enhanced interleukin 8 (IL-8) promoter activity. Furthermore, 3a/X1 and 7a/X4 expression in A549 cells enhanced production of inflammatory chemokines that were known to be up-regulated in SARS-CoV infection. Our results suggest potential involvement of 3a/X1 and 7a/X4 proteins in the pathological inflammatory responses in SARS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号