首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the cytogenetic effects of the herbicide Logran on root tip cells of Triticurn aestivum L. and Hordeum vulgare L. and changes of total protein content in root tip meristems were studied. The seeds of plants were treated with various concentrations of Logran (125, 250, 500 microg/ml) for 3 and 6 h. The percentages of abnormal cells were seen to increase with increasing treatment period and concentrations. The most dominant types of observed abnormalities were C-mitosis, distributed metaphase and anaphase, stickiness. All the used concentrations of Logran significantly induced a number of chromosomal aberrations in root tip cells of Hordemrn vulgare L. and Triticum aestivum L. Logran also decreased mitotic index. The decrease of protein content in root tips of Triticum aestivum L. is significant at all the treated concentrations and treatment periods when compared with control.  相似文献   

2.
The present study employed a sand culture experiment with three levels of zinc viz., 0.065 (control), 65.0 and 130 mg l?1 Zn (excess) as zinc sulfate, respectively, in sugarcane (Saccharum spp.), cultivar CoLk 8102. The results indicated growth depression, dark green leaves, decreased root number and length and sharp depression in mitotic activity of roots due to high doses of Zn (65 and 130 mg l?1); effects were significant at 130 mg l?1 Zn supply. The endogenous ion contents measurements revealed roots to be the major sink for excess Zn with lower amounts in leaves of sugarcane plants. High level of Zn decreased total phosphorus in leaves and increased it in roots. Fe and Cu content decreased, while, Mn increased in sugarcane plants due to high Zn in the growing medium. Plants experienced oxidative stress when exposed to higher levels of zinc. Biochemical investigations indicated high level of hydrogen peroxide, malondialdehyde contents with high chlorophyll a, b and carotenoids contents and activity of superoxide dismutase, catalase and peroxidase enzymes under high Zn conditions. These findings confirm suggest that excess Zn adversely affects root growth and mitotic efficiency, enhances chromosomal aberrations and increases growth and nutrient accumulation abnormalities, as well as oxidative stress.  相似文献   

3.
Effects of 2, 4 -D on seedling growth and chromosomal abnormalities were studied in Triticum aestivum and Phalaris minor. Seeds were soaked at different concentrations of 2, 4 -D (0.01%, 0.1%, 1.0%) for 4, 8, 12 and 16 hours. 2, 4 -D suppressed the germination more severely in P. minor than in T. aestivum. Shoot and root length was retarded with the increase of concentration and time of treatment in both species. Generally radical was more negatively affected than coleoptile and emergence of radical was not observed at 1.0% concentration at 8, 12, and 16 hours of treatment in T. aestivum while in P. minor there was a total lack of radical emergence at 1.0% concentration for all durations of treatment. Stiff and curled roots and undifferentiated callus like scutellar tissues were observed in T. aestivum, while in P. minor the coleoptile obtained was lean, pale green in colour and was lying flat on filter paper. Mitotic index decreased, while chromosomal abnormalities, bridges and laggards were increased with the increase of concentration and soaking time however, laggards were not observed in T. aestivum. Clumping and chain formation of chromosomes at metaphase was also noticed in P. minor.  相似文献   

4.
The effects of the food preservatives sodium benzoate (SB), boric acid (BA), citric acid (CA), potassium citrate (PC) and sodium citrate (SC) have been studied on root tips of Allium cepa L. Roots of A. cepa were treated with a series of concentrations, ranging from 20 to 100 ppm for 5, 10 and 20 h. The results indicate that these food preservatives reduced mitotic division in A. cepa compared with the respective control. Mitotic index values were generally decreased with increasing concentrations and longer treatment times. Additionally, variations in the percentage of mitotic stages were observed. The total percentage of aberrations generally increased with increasing concentrations of these chemicals and the longer period of treatment. Different abnormal mitotic figures were observed in all mitotic phases. Among these abnormalities were anaphase bridges, C-mitosis, micronuclei, lagging, stickiness, breaks and unequal distribution.  相似文献   

5.
Effects of 2, 4 -D on seedling growth and chromosomal abnormalities were studied in Triticum aestivum and Phalaris minor. Seeds were soaked at different concentrations of 2,4 -D (0.01%, 0.1%, 1.0% ) for 4, 8, 12 and 16 hours. 2,4-D suppressed the germination more severely in P. minor than in T. aestivum. Shoot and root length was retarded with the increase of concentration and time of treatment in both species. Generally radical was more negatively affected than coleoptile and emergence of radical was not observed at 1.0% concentration at 8, 12, and 16 hours of treatment in T. aestivum while in P. minor there was a total lack of radical emergence at 1.0% concentration for all durations of treatment. Stiff and curled roots and undifferentiated callus like scutellar tissues were observed in T. aestivum, while in P. minor the coleoptile obtained was lean, pale green in colour and was lying flat on filter paper. Mitotic index decreased, while chromosomal abnormalities, bridges and laggards were increased with the increase of concentration and soaking time however, laggards were not observed in T. aestivum. Clumping and chain formation of chromosomes at metaphase was also noticed in P. minor.  相似文献   

6.
以莴苣幼苗为受体,用培养皿法检测从细果角茴香中分离得到的二氢血根碱对莴苣幼苗根生长和根毛发育的影响,并采用根尖细胞有丝分裂检测和单细胞凝胶电泳法对其可能的作用机制进行了初步研究.结果显示:较低浓度(25、50μmol/L)二氢血根碱能显著促进莴苣根的生长,较高浓度(200、300μmol/L)二氢血根碱显著抑制根的生长;二氢血根碱(10、20、30、40、50μmol/L)对莴苣幼苗根毛发育有极显著的抑制作用,且两者均表现了浓度依赖性.较低浓度(25、50μmol/L)二氢血根碱使根尖细胞有丝分裂指数显著增加,而对根尖细胞DNA没有显著影响;较高浓度(200、300μmol/L)二氢血根碱使根尖细胞有丝分裂指数显著下降,同时根尖细胞DNA受到显著性损伤.研究发现,低浓度的二氢血根碱对莴苣幼苗根生长的促进作用主要是由于根尖细胞有丝分裂活力增加所致;而高浓度二氢血根碱对莴苣幼苗根的抑制作用极可能是由于根尖细胞DNA受到损伤,使得细胞分裂活力降低,分裂期细胞数目减少,从而导致根生长受到抑制.  相似文献   

7.
Souguir D  Ferjani E  Ledoigt G  Goupil P 《Protoplasma》2008,233(3-4):203-207
The potential genotoxicity of Cu(2+) was investigated in Vicia faba and Pisum sativum seedlings in hydroponic culture conditions. Cu(2+) caused a dose-dependent increase in micronuclei frequencies in both plant models. Cytological analysis of root tips cells showed clastogenic and aneugenic effects of this heavy metal on V. faba root meristems. Cu(2+) induced chromosomal alterations at the lowest concentration used (2.5 mM) when incubated for 42 h, indicating the potent mutagenic effect of this ion. A spectrum of chromosomal abnormalities was observed in V. faba root meristems, illustrating the genotoxic events leading to micronuclei formation.  相似文献   

8.
The resistance of some plants to Al (aluminium or aluminum) has been attributed to the secretion of Al(3+)-binding organic acid (OA) anions from the Al-sensitive root tips. Evidence for the 'OA secretion hypothesis' of resistance is substantial, but the mode of action remains unknown because the OA secretion appears to be too small to reduce adequately the activity of Al(3+) at the root surface. In this study a mechanism for the reduction of Al(3+) at the root surface and just beneath the epidermis by complexation with secreted OA(2-) is considered. According to our computations, Al(3+) activity is insufficiently reduced at the surface of the root tips to account for the Al resistance of Triticum aestivum L. cv. Atlas 66, a malate-secreting wheat. Experimental treatments to decrease the thickness of the unstirred layer (increased aeration and removal of root-tip mucilage) failed to enhance sensitivity to Al(3+). On the basis of additional modelling, the observed spatial distribution of Al in roots, and the anatomical responses to Al, it is proposed that the epidermis is an essential component of the diffusion pathway for both OA and Al. We suggest that Al(3+) in the cortex must be reduced to small concentrations in order substantially to alleviate the inhibition of root elongation and so that the outer surface of the epidermis can tolerate relatively large concentrations of Al(3+). If OA secretion is required for reducing Al(3+) mainly beneath the root surface, rather than in the rhizosphere, then the metabolic cost to plants will be greatly reduced.  相似文献   

9.
Salt stress severely affects plant growth and regulation; however knowledge about its effect on cytological changes is limited. In this report, studies were carried out to reveal the morphological and cytogenetic responses of the Allium cepa roots after prolonged (7, 14, 20 days) exposure to salt stress in tissue culture conditions. Roots of plants were treated with different concentrations (100, 200, 300 mM) of NaCl and KCl added to the culture medium. Both salts caused root growth reduction and showed cytotoxic effect reflected in reduction of root tip cells mitotic activity and increase of different abnormalities such as chromosome breaks and bridges and formation of micronuclei. This experiment showed differences of the action of excessive amounts of both tested salts at the cellular level, as KCl induced higher frequencies of abnormalities during cell divisions, whereas NaCl showed more mitodepressive effect and more frequently led to the root meristem cell death.  相似文献   

10.
The effects of the food preservatives sodium benzoate (SB), boric acid (BA), citric acid (CA), potassium citrate (PC) and sodium citrate (SC) have been studied on root tips of Allium cepa L. Roots of A. cepa were treated with a series of concentrations, ranging from 20 to 100 ppm for 5, 10 and 20 h. The results indicate that these food preservatives reduced mitotic division in A. cepa compared with the respective control. Mitotic index values were generally decreased with increasing concentrations and longer treatment times. Additionally, variations in the percentage of mitotic stages were observed. The total percentage of aberrations generally increased with increasing concentrations of these chemicals and the longer period of treatment. Different abnormal mitotic figures were observed in all mitotic phases. Among these abnormalities were anaphase bridges, C-mitosis, micronuclei, lagging, stickiness, breaks and unequal distiribution.  相似文献   

11.
环磷酰胺诱发蚕豆体细胞遗传损伤的研究   总被引:4,自引:0,他引:4  
利用蚕豆根尖研究环磷酰胺的遗传毒性效应, 结果表明:环磷酰胺(0.1~5.0 mg/mL)能够降低蚕豆根尖细胞有丝分裂指数, 使根尖细胞中具有微核、核出芽及核固缩的细胞明显增多, 并诱发染色体结构和行为异常, 产生染色体断片、滞后和桥。环磷酰胺处理组根尖中具有核固缩和微核的细胞数呈剂量依赖性增加, 且与作用时间呈正相关, 而分裂指数的降低也具有剂量和时间效应关系。研究结果表明, 低浓度长时间接触或高浓度短时间接触环磷酰胺均可产生遗传毒害, 因此, 有关的作业人员应注意防护。  相似文献   

12.
* In this study we address the impact of changes in plant heavy metal, (i.e. zinc (Zn) and cadmium (Cd)) status on metal accumulation in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. * Thlaspi caerulescens plants were grown hydroponically on both high and low Zn and Cd regimes and whole-shoot and -root metal accumulation, and root (109)Cd(2+) influx were determined. * High-Zn-grown (500 microm Zn) plants were found to be more Cd-tolerant than plants grown in standard Zn conditions (1 microm Zn). Furthermore, shoot Cd accumulation was significantly greater in the high-Zn-grown plants. A positive correlation was also found between shoot Zn accumulation and increased plant Cd status. Radiotracer (109)Cd root flux experiments demonstrated that high-Zn-grown plants maintained significantly higher root Cd(2+) influx than plants grown on 1 microm Zn. It was also found that both nickel (Ni) and copper (Cu) shoot accumulation were stimulated by high plant Zn status, while manganese (Mn) accumulation was not affected. * A speculative model is presented to explain these findings, suggesting that xylem loading may be one of the key sites responsible for the hyperaccumulation of Zn and Cd accumulation in Thlaspi caerulescens.  相似文献   

13.
14.
The effects of cadmium at different concentrations (0.5–20 ppm) on root growth, cell division and chromosomal morphology of Hordeum vulgare were studied. The rate of root growth and mitotic index decreased progressively with increasing cadmium concentration and treatment duration. Different concentrations of cadmium could cause mitotic irregularities comprising c-mitoses, anaphase bridges, breaks, stickiness, lagging and vagrant chromosomes and micronuclei. The intensity of the toxic effects is basically dependent on the cadmium concentration and duration of treatment.  相似文献   

15.
The effect of cadmium (Cd) was studied on root tips of Pisum sativum L. Seeds of P. sativum were treated with a series of concentrations ranging from 0.125, 0.250, 0.500 and 1.000 mM for 6 h. The effect of Cd was analyzed by studying the percentage seed germination, radicle length (RL), mitotic index (MI) and chromosomal aberrations (CAs) in root tip. The results revealed that Cd had significant impeding effect on the root meristem activity of P. sativum at 0.500 and 1.000 mM as noticed by reduction in seed germination percentage and RL compared to control. Furthermore, it also reduced MI in dose-related manner compared to control. Additionally, the variation in the percentage of mitotic abnormalities was observed. The overall percentage of aberrations generally increased with increasing concentrations of Cd. Among these abnormalities laggards, bridges, stickiness, precocious separation and fragments were most common. The obtained results demonstrated that the Cd treatment leads to a significant reduction in MI and increase in CAs. Overall results allow us to suggest that the Cd has clastogenic effect on the crop.  相似文献   

16.
ABSTRACT

Moderate and low concentrations of Zn(II) and Cd(II) were defined as those which depressed the rate of root elongation in Allium cepa L. to about 40 and 70% respectively of the control (17.3 ± 4.9 mm/day) at 25°C. At moderate concentrations, cells were detoxified from Cd(II), but not from Zn(II), by inducing the heavy metal chelators phytochelatins. Thus, root elongation further decreased (from 41 to 19% of the control) at moderate (0.05 mM) Cd(II) concentration upon addition of 0.25 mM L-buthionine-[S,R]-sulfoximine (BSO), a specific inhibitor of phytochelatin synthesis. On the other hand, cells were also detoxified from Zn(II) by an alternative mechanism, as the 42% inhibition displayed at 0.5 mM Zn(II) concentration was partially reversed (up to 79%) in the presence of BSO. Zn(II) activated the checkpoint pathway induced by DNA damage, as a transient G2 block was produced; this block was partially cancelled by caffeine, so that chromosomal bridges (but no breaks) were observed in ana-telophase. On the other hand, Cd(II) did not activate the DNA damage checkpoint, as cells entered into anaphase with chromosomal breaks and bridges without any delay. Cd(II) may preclude the recognition of DNA damage by altering protein-DNA interactions, since 30% of the metaphases displayed clumped chromosomes. A minimum threshold was required to induce the adaptive responses described here, as BSO did not modify the reduction in root elongation rate recorded at low concentrations of both heavy metals.  相似文献   

17.
Climate change (elevated atmospheric CO2, and altered air temperatures, precipitation amounts and seasonal patterns) may affect ecosystem processes by altering carbon allocation in plants, and carbon flux from plants to soil. Mycorrhizal fungi, as carbon sinks, are among the first soil biota to receive carbon from plants, and thereby influence carbon release from plants to soil. One step in this carbon release is via fine root and mycorrhizal turnover. It is necessary to know the lifetime and temporal occurrence of roots and mycorrhizae to determine the capacity of the soil ecosystem to sequester carbon assimilated aboveground. In this study, ponderosa pine (Pinus ponderosa Laws) seedlings were grown under three levels of atmospheric CO2 (ambient, 525 and 700 mol CO2 mol-1) and three levels of annual nitrogen additions (0,100 and 200 kg N ha-1) in open-top chambers. At a two-month frequency during 18 months, we observed ectomycorrhizal root tips observed using minirhizotron tubes and camera. The numbers of new mycorrhizal root tips, the numbers of tips that disappeared between two consecutive recording events, and the standing crop of tips at each event were determined. There were more mycorrhizal tips of all three types seen during the summer compared with other times of the year. When only the standing crop of mycorrhizal tips was considered, effects of the CO2 and N addition treatments on carbon allocation to mycorrhizal tips was weakly evident. However, when the three types of tips were considered collectively, tips numbers flux of carbon through mycorrhizae was greatest in the: (1) high CO2 treatment compared with the other CO2 treatments, and (2) intermediate N addition treatment compared with the other N addition treatments. A survival analysis on the entire 18 month cohort of tips was done to calculate the median lifetime of the mycorrhizal root tips. Average median lifetime of the mycorrhizal tips was 139 days and was not affected by nitrogen and CO2 treatments.  相似文献   

18.
Nanoparticles have a positive impact in several subjects especially in agriculture, while their safety is still being debated. Numerous commercial nano pesticide, insecticides, and fertilizers products are found in the local markets without any intensely studies on the side effect of these products on plant, human as well as environmental effects. The present study aimed to evaluate the genotoxicity of commercial amino zinc nanoparticles (AZ NPs) on Triticum aestivum L. during seeds germination and root elongation using concentration ranges (50, 100, and 150 ppm) at different exposure times (8, 16 and 24 hrs). Long term exposure to AZ NPs, exhibited only slight variation in germination rates and the elongation of roots was affected by AZ NPs treatment ranged from 97.66 to 100%. Significant reduction in the mitotic index was 35.33% after 24 hrs and 150 ppm of AZ NPs, was also observed comparing with control which was 88.0%. Genotoxicity was evaluated at a cytological level in root meristems that revealed sever variations in mitotic activity, chromosomal aberrations, and micronuclei release. Results exhibited that nano amino zinc could enter effortlessly into the cells and inhibit the normal cellular function. The decrease in the emergence of chromosomal aberrations resulting from AZ NPs exposure in a dose-dependent manner was clearly indicated that AZ NPs has induced genotoxic effect on wheat root tips.  相似文献   

19.
Khynriam D  Prasad SB 《Cytobios》1999,100(395):171-180
Allium cepa root growth was retarded by cisplatin treatment in a dose-dependent manner. A decrease in the mitotic index (MI) and an increase in the number of interphase cells was seen in cisplatin treated root tips. An increase in the frequency of abnormal mitoses and chromosomal aberrations was also observed in cisplatin treated groups which indicates its genotoxic effect on plant cells. The endogenous glutathione (GSH) level in the root tips decreased significantly after cisplatin treatment which may favour its increased interaction with cellular DNA thereby developing enhanced chromosomal aberrations and affecting cell divisions and root growth. It is suggested that the decrease in endogenous GSH may be related to the development of cisplatin-mediated genotoxic effects in plants.  相似文献   

20.
小麦锌营养状况对锌吸收的影响   总被引:1,自引:0,他引:1  
不论锌的供给形态是无视态(ZnSO_4),还是螯合态(ZnEDTA 或 Zn—PS),小麦锌吸收率均随供锌浓度的提高而增加。缺锌小麦锌吸收率明显高于对照。供ZnEDTA的小麦锌吸收率低于供ZnSO_4和 Zn—PS的小麦。无机态Zn~(24)在根自由空间内累积多,而 ZnEDTA态锌在根自由空间中累积少,缺锌小麦根分泌的有机物质对前者活化量大于后者、被植物吸收利用的数量也就高于后者。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号