首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
The von Recklinghausen neurofibromatosis (NF1) gene has been mapped to the pericentromeric region of chromosome 17. We conducted linkage analyses of NF1 by using 10 polymorphic DNA markers from this chromosomal region. We ascertained 20 American Caucasian NF1 families (163 individuals, 98 NF1 affected) in Michigan and Ohio and also studied a large family ascertained primarily in North Carolina. The following markers were used in this study: HHH202, TH17.19, D17Z1, ERBA1, EW203, EW206, EW207, EW301, CRI-L581, and CRI-L946. NF1 did not recombine with either TH17.19 or HHH202 in any of the informative meioses surveyed (maximum lod scores of 17.04 and 7.21, respectively, at a recombination fraction of .00), indicating that these markers map very close to the NF1 gene. We also report evidence of three instances of recombination between NF1 and the centromeric marker D17Z1 (maximum lod score of 13.43 at a recombination fraction of .04), as well as two crossovers between pairs of marker loci. We find no evidence of locus heterogeneity, and our results support the localization of the NF1 gene to proximal chromosome 17q.  相似文献   

2.
The von Recklinghausen neurofibromatosis (NF1) gene has been localized to the pericentromeric region of chromosome 17. We have screened six multigenerational families with multiple, tightly linked markers to aid in mapping this region of the chromosome. More than 150 members in six families were typed with probes including HHH202, D17Z1, EW203, EW206, EW207, EW301, pA10-41, D17S37, and D17S36. Two-point lod scores for NF1 versus all markers were calculated. HHH202 demonstrated the tightest linkage to NF1 with theta = .0, z = 3.86 (95% confidence limits [CL] of theta = .0-.13), suggesting that HHH202 be considered as a potential candidate marker for use in carrier detection and prenatal diagnosis. Pairwise marker-to-marker lod scores were used in examining the most likely order of subsets of the markers. Of those tested, the most likely order was (pter)-pA10-41-EW301-D17Z1-HHH202-NF1-E W206-EW207-EW203-(qter). In addition, we have ascertained an NF1 x NF1 half-cousin mating in which there are four affected family members who are potentially homozygous for the disease gene. Two of these four individuals have been sampled and typed for marker loci. When their D17Z1 genotypes are considered, the probability that both these individuals are heterozygous is 85%.  相似文献   

3.
The gene for von Recklinghausen neurofibromatosis type 1 (NF1) has recently been mapped to the pericentromeric region of human chromosome 17. To further localize the NF1 gene, linkage analysis using chromosome 17 DNA markers was performed on 11 multigeneration families with 175 individuals, 57 of whom were affected. The markers used were D17Z1 (p17H8), D17S58 (EW301), D17S54 (EW203), D17S57 (EW206), D17S73 (EW207), CRI-L946, HOX-2, and growth hormone. Tight linkage was found between NF1 and D17Z1, D17S58, and D17S57 with a recombination fraction of zero. One recombinant was detected between NF1 and D17S73, showing linkage with a 10% recombination fraction. No linkage was detected between NF1 and CRI-L946 or between HOX-2 and growth hormone. Our data are consistent with the proposed gene order pter D17S58-D17Z1-NF1-D17S57-D17S73 qter.  相似文献   

4.
Previous genetic analyses of chromosome 17 markers and NF1 (Fain et al. 1987) were extended in an attempt to order marker loci that map physically to 17cen----17q12. Three additional markers (HHH202, CRI-L581, and CRI-L946) were included in the analyses. Recombinants within the cluster of seven unordered marker loci were identified by pairwise analyses for each family and by examining the within-sibship segregation patterns for different markers. Changes in the segregation pattern for different loci define genetic breakpoints. Given that interference is complete in the region, markers with the same segregation pattern lie on one side of the breakpoint, while markers with different segregation patterns lie on opposite sides of the breakpoint. If the order of boundary markers is known, markers on each side of a breakpoint can be oriented in relation to the centromere. The order cen-(HHH202/NF1)-(EW207)-(EW203/CRI-L581)- (CRI-L946)-(HOX-2/NGFR)-qter was inferred by combining information from physical breakpoints in a panel of mouse/human hybrids and information from genetic breakpoints found in 16 NF1 families.  相似文献   

5.
The genetic locus for neurofibromatosis 1 (NF1) has recently been mapped to the pericentromeric region of chromosome 17. We have genotyped eight previously identified RFLP probes on 50 NF1 families to determine the placement of the NF1 locus relative to the RFLP loci. Thirty-eight recombination events in the pericentromeric region were identified, eight involving crossovers between NF1 and loci on either chromosomal arm. Multipoint linkage analysis resulted in the unique placement of six loci at odds greater than 100:1 in the order of pter-A10-41-EW301-NF1-EW207-CRI-L581-CRI-L946 -qter. Owing to insufficient crossovers, three loci--D17Z1, EW206, and EW203--could not be uniquely localized. In this region female recombination rates were significantly higher than those of males. These data were part of a joint study aimed at the localization of both NF1 and tightly linked pericentromeric markers for chromosome 17.  相似文献   

6.
The von Recklinghausen neurofibromatosis (NF1) locus has been linked to chromosome 17, and recent linkage analyses place the gene on the proximal long arm. NF1 probably resides in 17q11.2, since two unrelated NF1 patients have been identified who possess constitutional reciprocal translocations involving 17q11.2 with chromosomes 1 and 22. We have used a somatic-cell hybrid from the t(17;22) individual, along with other hybrid cell lines, to order probes around the NF1 locus. An additional probe, 17L1, has been isolated from a NotI linking library made from flow-sorted chromosome 17 material and has been mapped to a region immediately proximal to the translocation breakpoint. While neither NF1 translocation breakpoint has yet been identified by pulse-field gel analysis, an overlap between two probes, EW206 and EW207, has been detected. Furthermore, we have identified the breakpoint in a non-NF1 translocation, SP-3, on the proximal side of the NF1 locus. This breakpoint has been helpful in creating a 1,000-kb pulsed-field map, which includes the closely linked NF1 probes HHH202 and TH17.19. The combined somatic-cell hybrid and pulsed-field gel analysis we report here favors the probe order D17Z1-HHH202-TH17.19-CRYB1-17L1-NF1- (EW206, EW207, EW203, L581, L946)-(ERBB2, ERBA1). The agreement in probe ordering between linkage analysis and physical mapping is excellent, and the availability of translocation breakpoints in NF1 should now greatly assist the cloning of this locus.  相似文献   

7.
In addition to reporting, in accompanying papers, their individual analyses of mapping the neurofibromatosis type 1 (NF1) gene on chromosome 17, members of the International Consortium for NF1 Linkage contributed their data for our joint analysis to determine the exact sequence of flanking markers and to obtain precise estimates and confidence limits of the recombination fractions for the closest markers, in anticipation of clinical use. With specimens from 142 families and more than 700 affected persons, eight teams used 31 markers in the pericentric region of chromosome 17 to perform 13,838 genotypings. With the combined data, we used the computer program CRI-MAP to build the most likely sequence of loci by sequentially adding single loci to a fixed pair of loci and separately calculating the likelihood of all permutations of four consecutive loci. The best order is pter-pA10-41-EW301-centromere (p17H8)-pHHH202-NF1-EW206-EW207-EW203++ +-CRI-L581-CRI-L946-HOX2-NGFR-qter. The total genetic distance from pA10-41 to NGFR is 26 cM in males and 56 cM in females, and the overall difference in sex-specific maps is statistically significant (P = .006). The upper 99% confidence limits of the recombination fraction of the closest proximal marker, pHHH202, is 4%, and that for the closest distal marker, EW206, is 9%. These limits should decrease with the use of additional probes and the further evaluation of DNA from the six persons showing multiple recombinations within short genetic distances. Clinical application is technically feasible with currently available markers, although its appropriate use for prenatal and presymptomatic diagnosis requires further discussion and evaluation.  相似文献   

8.
Nine markers from the pericentromeric region of chromosome 17 were typed in 16 British and five South African families with neurofibromatosis type 1 (NF1). The markers--p17H8, pHHH202, and EW204--were linked to NF1 at recombination fractions less than 1%. No evidence of locus heterogeneity was detected. Inspection of recombinant events in families informative for several markers suggests that the NF1 gene is located between the markers EW301 (cen-p11.2) and EW206 (cen-q12) and possibly distal to pHHH202 (q11.2-q12).  相似文献   

9.
A genetic linkage study of the RFLPs identified by nine DNA probes localized to the pericentromeric region and long arm of chromosome 17 has been undertaken in 16 families with von Recklinghausen neurofibromatosis (NF1). Close linkage has been shown with the markers CRI-L946 (D17S36), CRI-L581 (D17S37), p17H8 (D17Z1), and pA10-41 (D17S71). The ERBA1 and COL1A1 loci may also be closely linked, but the data are limited. The results for HOX2 and NGFR suggest only loose linkage with the NF1 gene, while no linkage was found between NF1 and the growth hormone locus. No suggestion of nonallelic heterogeneity of NF1 was found in this study.  相似文献   

10.
We have performed linkage analysis in a large French-Acadian kindred segregating one form of autosomal dominant Charcot-Marie-Tooth disease (CMTD) (type IA) using 17 polymorphic DNA markers spanning human chromosome 17 and demonstrate linkage to several markers in the pericentromeric region, including DNA probes pA10-41, EW301, S12-30, pTH17.19, c11-2B, and p11-2c11.5. Linkage of markers pA10-41 and EW301 to CMTD type IA has been reported elsewhere. Four new markers, 1516, 1517, 1541, and LL101, which map to chromosome 17 have been identified. The marker 1516 appears to be closely linked to the CMTD locus on chromosome 17 as demonstrated by a maximum lod score of 3.42 at theta (recombination fraction) = 0. This marker has been mapped to 17p11.2 using a somatic cell hybrid constructed from a patient with Smith-Magenis syndrome [46,XY, del(17)(p11.2p11.2)]. A lod score of 6.16 has been obtained by multipoint linkage analysis with 1516 and two markers from 17q11.2, pTH17.19, and c11-2B. The markers 1517 and 1541 have been mapped to 17p12-17q11.2 and demonstrate maximum lod scores of 2.35 and 0.63 at recombination values of .1 and .2, respectively. The marker LL101 has been mapped to 17p13.105-17p13.100 and demonstrates a maximum lod score of 1.56 at a recombination value of .1. Our study confirms the localization of CMTD type IA to the pericentromeric region of chromosome 17.  相似文献   

11.
Vance et al. have reported linkage of hereditary motor and sensory neuropathy type I (HMSN I) to the pericentromeric region of chromosome 17. We have studied eight families with HMSN I (also called the hypertrophic form of Charcot-Marie-Tooth disease) for linkage of the disease locus to polymorphic loci in the centromeric region of chromosome 17. Linkage has been confirmed for D17S58 (EW301) with a maximum lod score of 5.89 at theta = 0.08 and for D17S71 (pA10-41) with a maximum lod score of 3.22 at theta = 0.08. EW301 is on 17p, 5.5 centimorgans from the centromere. Two families, previously reported as being linked to the Duffy blood group locus on chromosome 1, were included in this study, and one now provides positive lod scores for chromosome 17 markers. There was no evidence of heterogeneity.  相似文献   

12.
Tightly linked markers for the neurofibromatosis type 1 gene   总被引:15,自引:0,他引:15  
Relationships among genetic markers in the region of the neurofibromatosis type 1 (NF1) gene on chromosome 17 were investigated by linkage studies in a large sample set of affected families and in a panel of 58 normal families. A new marker, pHHH202 (D17S33), was included along with two markers known to be closely linked to NF. The maximum likelihood estimate of the recombination rate between the pHHH202 and NF1 loci was found to be O. Multilocus analysis suggested the following marker order: pA10-41-(p3-6, pHHH202); the NF1 gene fell with equal likelihood between either pA10-41-p3-6 or p3-6-pHHH202. The odds against NF1 being outside this cluster of tightly linked markers were greater than 15:1.  相似文献   

13.
A somatic cell hybrid mapping panel was constructed to localize cloned DNA sequences to any of 15 potentially different regions of human chromosome 17. Relatively high-resolution mapping is possible for 50% of the chromosome length in which 12 breakpoints are distributed over approximately 45 megabases, with an average spacing estimated at 1 breakpoint every 2-7 megabases. This high-resolution capability includes the pericentromeric region of 17 to which von Recklinghausen neurofibromatosis (NF1) has recently been mapped. Using 20 cloned genes and anonymous probes, we have tested the expected order and location of panel breakpoints and confirmed, refined, or corrected the regional assignment of several cloned genes and anonymous probes. Four markers with varying degrees of linkage to NF1 have been physically localized and ordered by the panel: the loosely linked markers myosin heavy chain 2 (25 cM) to p12----13.105 and nerve growth factor receptor (14 cM) to q21.1----q23; the more closely linked pABL10-41 (D17S71, 5 cM) to p11.2; and the tightly linked pHHH202 (D17S33) to q11.2-q12. Thus, physical mapping of linked markers confirms a pericentromeric location of NF1 and, along with other data, suggests the most likely localization is proximal 17q.  相似文献   

14.
The defective gene causing von Recklinghausen neurofibromatosis (NF1), one of the most common inherited disorders affecting the human nervous system, was recently mapped to chromosome 17. We have used additional DNA markers to further narrow and bracket the NF1 defect. A multipoint linkage analysis suggests that the NF1 gene is flanked by D17Z1 on the centromeric side and by EW 207 on the telomeric side of the long arm of chromosome 17. The identification of closely linked flanking markers should allow us to develop a reliable prenatal and presymptomatic diagnostic test for this serious neurological disorder and provides the basis for applying chromosome-specific cloning techniques for the isolation and characterization of the mutant gene.  相似文献   

15.
The genetic defect causing von Recklinghausen neurofibromatosis (NF1) has been mapped to the proximal long arm of chromosome 17 by linkage analysis. Flanking markers have been identified, bracketing NF1 in 17q11.2 and laying the foundation for isolating the disease gene. Recently, a family in which a mother and her two children show both the symptoms of NF1 and the presence of a balanced translocation, t(1;17)(p34.3;q11.2), has been identified. We have examined the possibility that the translocation has occurred in or near the NF1 gene by constructing a somatic cell hybrid line containing the derivative chromosome 1 (1qter-p34.3::17q11-qter). On chromosome 1, the breakpoint occurred between SRC2 and D1S57, which are separated by 14 cM. The translocation breakpoint was localized on chromosome 17 between D17S33 and D17S57, markers that also flank NF1 within a region of 4 cM. These data are consistent with the possibility that the translocation event is the cause of NF1 in this pedigree. Consequently, the isolation of the translocation breakpoint, by approach from either the chromosome 1 or the chromosome 17 side, may facilitate the identification of the NF1 gene.  相似文献   

16.
A total of 15 polymorphic markers were used to construct a genetic map that encompasses the NF1 locus on chromosome 17. The markers were a subset of a large collection of chromosome 17-specific probes and were selected for marker typing in NF1 families after physical localization to the pericentric region of the chromosome. Multilocus data for a total of 17 informative NF1 families and 39 other families were included in genetic analyses. No recombination was observed between NF1 and four markers, one or more of which was informative in 86% of parents. More-refined physical mapping studies demonstrated that all four of the markers are proximal to the chromosome 17 translocation breakpoints from two NF1 patients bearing balanced translocations. The region flanking the disease locus spans a distance of 1 centimorgan (cM) in males and 9 cM in females. Close flanking markers were informative in 76% of meioses. Sex differences in recombination rates in the pericentric region were highly significant statistically.  相似文献   

17.
Summary Recently, it has been shown that Charcot-Marie-Tooth disease type 1a (CMT1a) is linked with a duplication of a DNA segment that is detected by probe VAW409R3, and that is located on chromosome 17p11.2. Here, we show that this duplication also contains VAW412R3a, but not A10-41 and EW503. Accounting for the duplication in recombination analysis, we found recombinants between CMT1a and EW301 and EW502, but not with A10-41, VAW409R3, and VAW412R3. Using pulsed-field gel electrophoresis analysis, we estimated the minimal size of the duplicated region in CMT1a patients to be 1100 kb.  相似文献   

18.
The Tabby markings of the domestic cat are unique coat patterns for which no causative candidate gene has been inferred from other mammals. In this study, a genome scan was performed on a large pedigree of cats that segregated for Tabby coat markings, specifically for the Abyssinian (Ta-) and blotched (tbtb) phenotypes. There was linkage between the Tabby locus and eight markers on cat chromosome B1. The most significant linkage was between marker FCA700 and Tabby (Z = 7.56, theta = 0.03). Two additional markers in the region supported linkage, although not with significant LOD scores. Pairwise analysis of the markers supported the published genetic map of the cat, although additional meioses are required to refine the region. The linked markers cover a 17-cM region and flank an evolutionary breakpoint, suggesting that the Tabby gene has a homologue on either human chromosome 4 or 8. Alternatively, Tabby could be a unique locus in cats.  相似文献   

19.
Charcot-Marie-Tooth disease type 1a (CMT 1a) is an autosomal dominant peripheral neuropathy linked to the DNA markers D17S58 and D17S71, located in the pericentromeric region of the chromosome 17p arm. We analyzed an extended 5-generation Belgian family, multiply affected with CMT 1a, for linkage with eight chromosome 17 markers. The results indicated that the CMT 1a mutation is localized in the chromosomal region 17p11.2-p12 between the marker D17S71 and the gene for myosin heavy polypeptide 2 of adult skeletal muscle.  相似文献   

20.
Summary We have investigated genetic linkage of von Recklinghausen neurofibromatosis (NF1) and achondroplasia (ACH) using chromosome-17 markers that are known to be linked to NF1. Physical proximity of the two loci was suggested by the report of a patient with mental retardation and the de novo occurrence of both NF1 and ACH. Since the chance of de novo occurrence of these two disorders in one individual is 1 in 600 million, this suggested a chromosomal deletion as a single unifying molecular event and also that the ACH and NF1 loci might be physically close. To test this, we performed linkage analysis on a three-generation family with ACH. We used seven DNA probes that are tightly linked to the NF1 locus, including DNA sequences that are known to flank the NF1 locus on the centromeric and telomeric side. We detected two recombinants between the ACH trait and markers flanking the NF1 locus. In one recombinant, the flanking markers themselves were nonrecombinant. Multi-point linkage analysis excluded the ACH locus from a region surrounding the NF1 locus that spans more than 15cM (lod score < -2). Therefore, analysis of this ACH pedigree suggests that the ACH locus is not linked to the NF1 locus on chromosome 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号