首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inactivation of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) (GAPDH) during guanidine hydrochloride (GdnHCl) denaturation has been compared with its state of aggregation and unfolding, by light scattering and fluorescence measurements. The enzyme first dissociates at low concentrations of GdnHCl, followed by the formation of a highly aggregated state with increasing denaturant concentrations, and eventually by complete unfolding and dissociation to the monomer at concentrations of greater than 2 M GdnHCl. The aggregation and final dissociation correspond roughly with the two stages of fluorescence changes reported previously (Xie, G.-F. and Tsou, C.-L. (1987) Biochim. Biophys. Acta 911, 19-24). Rate measurements show a very rapid inactivation, the extents of which increase with increasing concentrations of GdnHCl. This initial rapid phase of inactivation which takes place before dissociation and unfolding of the molecule is in agreement with the results obtained with other enzymes, that the active site is affected before noticeable conformational changes can be detected for the enzyme molecule as a whole. A scheme for the steps leading to the final denaturation, and dissociation of the enzyme to the inactive and unfolded monomer, is proposed.  相似文献   

2.
The reversible inactivation and dissociation of the allosteric phosphofructokinase from Escherichia coli has been studied in relatively mild conditions, i.e., in the presence of the chaotropic agent KSCN. At moderate KSCN concentration, the loss of enzymatic activity involves two separated phases: first, a rapid dissociation of part of the tetramer into dimers, second, a slower displacement of the dimer-tetramer equilibrium upon further dissociation of the dimer into monomers. These two reactions can no longer be distinguished above 0.3 M KSCN since complete inactivation occurs in a single reaction. Different changes are observed for the fluorescence and the activity of the enzyme in KSCN: the fluorescence is not affected by the dissociation into dimers which is responsible for inactivation. The decrease in fluorescence reflects the change in environment of the unique tryptophan residue, Trp 311, during the dimer to monomer dissociation. This residue belongs to the interface containing the regulatory site, and its native fluorescence indicates that this interface is still present in the dimer. The substrate fructose 6-phosphate protects phosphofructokinase from inactivation by binding to the tetramer and prevents its dissociation into dimers. The presence of phosphoenolpyruvate prevents the slow dissociation of the dimer into monomers, which shows the ability of the dimer to bind the inhibitor. Two successive processes can be observed during reassociation of the protein upon KSCN dilution. First, a fast reaction (k1 = 2 x 10(5) M-1.s-1) is accompanied by a fluorescence increase and results in the formation of the dimeric species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Structural changes in the purified (Na+ + K+)-ATPase accompanying detergent inactivation were investigated by monitoring changes in light scattering, intrinsic protein fluorescence, and tryptophan to beta-parinaric acid fluorescence resonance energy transfer. Two phases of inactivation were observed using the non-ionic detergents, digitonin, Lubrol WX and Triton X-100. The rapid phase involves detergent monomer insertion but little change in protein structure or little displacement of closely associated lipids as judged by intrinsic protein fluorescence and fluorescence resonance energy transfer. Lubrol WX and Triton X-100 also caused membrane fragmentation during the rapid phase. The slower phase of inactivation results in a completely inactive enzyme in a particle of 400 000 daltons with 20 mol/mol of associated phospholipid. Fluorescence changes during the course of the slow phase indicate some dissociation of protein-associated lipids and an accompanying protein conformational change. It is concluded that non-parallel inhibition of (Na+ + K+)-ATPase and p-nitrophenylphosphate activity by digitonin (which occurs during the rapid phase of inactivation) is unlikey to require a change in the oligomeric state of the enzyme. It is also concluded that at least 20 mol/mol of tightly associated lipid are necessary for either (Na+ + K+)-ATPase or p-nitrophenylphosphatase activity and that the rate-limiting step in the slow inactivation phase involves dissociation of an essential lipid.  相似文献   

4.
The observation that liveMycobacterium leprae on entry into macrophages from lepromatous leprosy patients reduced the number of EA rosetting macrophages, was extended to macrophages from Swiss white mice also. Further, the fact that deadMycobacterium leprae do not bring about such a change in macrophages from mice, allowed us to develop this into a bacterial viability testing system. Thus drug treated macrophages in the presence ofMycobacterium leprae showed normal rosetting ability ifMycobacterium leprae are inactivated by the drug, but showed reduced level of rosetting when bacteria were not susceptible to the drug. It was shown that a drug like dapsone, does act onMycobacterium leprae based on its permeability, quantity available inside the macrophages and inhibition of its action by Para amino benzoic acid. The inactivation ofMycobacterium leprae by sulphone and rifampicin was also proved by the flourescence diacetate method, which showed poorly viable bacteria after exposure to drugs. Thus it has been possible to develop a rapid drug screening method for testing the activity of unknown compound againstMycobacterium leprae.  相似文献   

5.
The voltage-dependent action of several scorpion alpha-toxins on Na channels was studied in toad myelinated nerve under voltage clamp. These toxins slow the declining phase of macroscopic Na current, apparently by inhibiting an irreversible channel inactivation step and thus permitting channels to reopen from a closed state in depolarized membranes. In this article, we describe the rapid reversal of alpha-toxin action by membrane depolarizations more positive than +20 mV, an effect not achieved by extensive washing. Depolarizations that were increasingly positive and of longer duration caused the toxin to dissociate faster and more completely, but only up to a limiting extent. Repetitive pulses had a cumulative effect equal to that of a single pulse lasting as long as their combined duration. When the membrane of a nonperfused fiber was repolarized, the effects of the toxin returned completely, but if the fiber was perfused during the conditioning procedure, recovery was incomplete and occurred more slowly, as it did at lower applied toxin concentrations. Other alpha-type toxins, from the scorpion Centruroides sculpturatus (IVa) and the sea anemone Anemonia sulcata (ATXII), exhibited similar voltage-dependent binding, though each had its own voltage range and dissociation rate. We suggest that the dissociation of the toxin molecule from the Na channel is coupled to the inactivation process. An equivalent valence for inactivation gating, of less than 1 e per channel, is calculated from the voltage-dependent change in toxin affinity.  相似文献   

6.
Inactivation of apo-glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase(phosphorylating) (EC 1.2.1.12) from rat skeletal muscle at 4 degrees C in 0.15 M NaC1, 5 mM EDTA, 4 mM 2-mercaptoethanol pH 7.2 is a first-order reaction. The rate constant of inactivation depends on protein concentration. With one molecule of NAD bound per tetrameric enzyme, a 50 per cent loss in activity is observed and the rate constant of inactivation becomes independent of the protein concentration over a 30-fold range. Two moles of NAD bound per mole of enzyme fully protect it against inactivation. NADH affords a cooperative effect on enzyme structure similar to that of NAD. Inactivation of 7.8 S apoenzyme is reflected in its dissociation into 4.8-S dimers. In the case of enzyme-NAD1 complex, no direct relationship between the extent of inactivation and dissociation is observed, suggesting that these two processes do not occur simultaneously; we may say that dissociation is slower than inactivation. A mechanism in which the rate-limiting step for inactivation is a conformational change in the tetramer occurring prior to dissociation and affecting only the structure of the non-liganded dimer, is consistent with the experimental observations. Inorganic phosphate protects apoenzyme against inactivation. Its effect is shown to be due to the anion binding at specific sites on the protein with a dissociation constant of 2.6 plus or minus 0.4 mM. The NaC1-induced cold inactivation of glyceraldehyde-phosphate dehydrogenase is fully reversible at 25 degrees C in the presence of 20 mM dithiothreitol and 50 mM inorganic phosphate. The rate of reactivation is independent of protein concentration. Inactivated enzyme retains the ability to bind specific antibodies produced in rabbits, but diminishes its precipitating capability.  相似文献   

7.
A novel inactivation mechanism of the NAD-dependent hydrogenase from Alcaligenes eutrophus Z1 comprising redox-dependent steps is described. The model of the hydrogenase inactivation process is proposed which implies that the enzyme may exist in several forms which differ in their stability and spectral properties. One of these forms, existing within a limited (approximately -200 +/- 30 mV) potential range, undergoes a rapid and irreversible inactivation. The dissociation of the FMN prosthetic group from the apohydrogenase appears to be the main reason for the enzyme inactivation. The rationale for the enzyme stabilization under real operational conditions based on the chemical modification of the hydrogenase molecule is suggested.  相似文献   

8.
Glutathione reductase from Escherichia coli is inactivated when incubated with either NADPH or NADH. The process is inversely dependent on the enzyme concentration. Inactivation is rapid and monophasic with 1 microM NADPH and 1 nM enzyme FAD giving a t1/2 of 1 min. Complex formation between NADPH and the two-electron reduced enzyme (EH2) at higher levels of NADPH protects against rapid inactivation. NADP+, produced in a side reaction with oxygen, also protects by forming a complex with EH2. These complexes make analysis of the concentration dependence of the inactivation process difficult. Inactivation with NADH, where complexes do not interfere, is slower but can be analyzed more readily. With 152 microM NADH and 5.4 nM enzyme FAD, the time required for 50% inactivation is 17 min. The process is markedly biphasic, reaching the final inactivation level after 5-7 h. Analysis of the relationship between the final level of inactivation with NADH and the enzyme concentration indicates that inactivation is due to dissociation of the normally dimeric enzyme. Thus, the position of the dimer-monomer equilibrium between an active dimeric two-electron reduced species and an inactive monomeric two-electron reduced form determines the enzyme activity. An apparent equilibrium constant (Kd) for dissociation of dimer obtained from the anaerobic concentration dependent inactivation curves is 220 nM. Enzyme inactivated with NADH can be reactivated with glutathione, and the reactivation kinetics are second order, monomer-monomer over 75% of the reaction with an average apparent association rate constant (ka) of 13.1 (+/- 5.5) X 10(6) M-1 min-1.  相似文献   

9.
The pH-dependent dissociation of porcine heart mitochondrial malate dehydrogenase (L-malate:NAD+ oxidoreductase, EC 1.1.1.37) has been further characterized using the technique of sedimentation velocity ultracentrifugation. The increased rate and specificity of the inactivation of mitochondrial malate dehydrogenase by the sulfhydryl reagent N-ethylmaleimide has been correlated with the pH-dependent dissociation of the enzyme. Data obtained using NAD+ and its component parts to reassociate the enzyme and also to protect the enzyme from inactivation by N-ethylmaleimide suggest that the sulfhydryl residues being modified by N-ethylmaleimide are inaccessible when the enzyme is in its dimeric form. A dissociation curve for the pH-dependent dissociation suggests that a limited number of residues are being protonated concomitant with dissociation of the enzyme. An apparent pKa of 5.3 has been determined for this phenomenon. Studies using enzyme modified by the sulfhydryl reagent N-ethylmaleimide indicate that selective modification of essential sulfhydryl residues alters the proper binding of NADH.  相似文献   

10.
Biochemical and cytochemical procedures were developed to measure the rate of phagosomal acidification for phagosomal pH ranging from 5 to 2.5. These assays were based on the pH-dependent inactivation with time of horseradish peroxidase (HRP) activity, a result attributable to the dissociation of this enzyme to a colorless protein and ferriprotoporphyrin in acidic solutions. When preincubated in buffers of varying pH, the rate of HRP inactivation followed a sigmoid curve, with the highest rate of inactivation between 4.3 and 3.5 when using citrate-phosphate buffer and between pH 3.4 and 2.8 when using the universal ABC buffer. This inactivation was temperature but not concentration dependent. When Paramecium caudatum, members of the P. aurelia complex or Tetrahymena thermophila was pulsed briefly with HRP and small fluorescent beads, the loss of HRP activity, measured biochemically in cell homogenates and/or cytochemically in phagosomes, was rapid and followed the kinetics of a first-order rate reaction. Both assays gave similar values for the rate constant for acidification and similar rates of inhibition when P. caudatum was exposed to a proton ionophore, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. These assays can readily be adapted to other phagocytic cells as long as a rapid procedure is available for removing all unphagocytosed HRP and latex beads. These procedures are sensitive and rapid thus allowing many samples to be quickly prepared and analyzed.  相似文献   

11.
Upon reaction with N-ethylmaleimide, tryptophanyl-tRNA synthetase from beef pancreas dissociates into subunits. At pH7, the rate of the dissociation is close to both the reaction rate of the buried--SH groups and the rate of inactivation (Iborra, F., Mourgeon, G., Labouesse B., and Labouesse, J. (1973) Eur. J. Biochem. 39, 547-556). The pH and enzyme concnetration dependences of the reaction rate of the 16 cysteinyl residues of the enzyme as well as that of its inactivation support the idea that inactivation by alkylation of the--SH groups is due essentially to the dissociation of the protein into inactive subunits and not to the chemical blocking of a catalytic residue. This is confirmed by the independence on N-ethylmaleimide concentration of the reaction of the buried--SH groups and of the inactivation of the enzyme at high N-ethylmaleimide concentration. The dissociation becomes in this case the rate-limiting step of the chemical reaction. The monomeric structure is stabilized by the blocking of the--SH groups exposed during the dissociation. The dissociation constant of the dimeric enzyme is progressively increased during the alkylation. The tightness of the associated structure depends on the protonation of groups titrating between pH 7 and pH 9.  相似文献   

12.
 用荧光光谱法、截流荧光法和酶活力测定法研究了在盐酸胍溶液中米曲霉氨基酰化酶变性动力学。我们发现在4.8mol/L盐酸胍溶液作用下(0.05mol/L磷酸缓冲溶液,pH7.4,25℃),氨基酰化酶二聚体解离成单亚基过程是一个十分快速的过程,反应速率常数k为3361l/s,即约需3ms时间完成;而单亚基分子的构象变化需要约20min方能到达平衡态,这是一个逐渐变化的缓慢过程。酶分子在胍作用下的失活现象同酶分子的结构变化紧密相关,在胍浓度大于4mol/L时酶完全失活。在高浓度盐酸胍下酶失活主要是因为酶二聚体迅速解离成单亚基的过程和单亚基构象逐渐变化的缓慢过程。双亚基解离常数大小标志着酶分子亚基间作用力的强弱。  相似文献   

13.
14.
Cyclic heptapeptide microcystins are a group of hepatoxicants which exert the cytotoxic effects by inhibiting the catalytic activities of phosphatase-2A (PP-2A) and phosphatase-1 (PP-1) and thus disrupt the normal signal transduction pathways. Microcystins interact with PP-2A and PP-1 by a two-step mechanism involving rapid binding and inactivation of protein phosphatase catalytic subunit, followed by a slower covalent interaction. It was proposed that inactivation of PP-2A/PP-1 catalytic activity by microcystins precedes covalent adduct formation. In this study, we used a biosensor based on surface plasmon resonance (SPR) to examine the effects of three microcystins, MCLR, MCRR and MCYR, on the binding between PP-2A and its substrate, phosphorylase-a (PL-a), during the first step of the interaction. The SPR biosensor provides real-time information on the association and dissociation kinetics of PL-a with immobilized PP-2A in the absence and presence of microcystins. It was found that the affinity of PL-a to microcystin-bound PP-2A was four times smaller compared to unbound PP-2A, due to 50% decreases in the association rates and two-fold increases in dissociation rates of PL-a binding to PP-2A. The results suggest that the rapid binding of microcystins to the PP-2A catalytic site leads to the formation of a noncovalent microcystin/PP-2A adduct. While the adduct formation fully inhibits the catalytic activity of PP-2A, it only results in partial inhibition of the substrate binding. The similar effects of the three microcystins on PP-2A suggest that the toxins bind to PP-2A at the same site and cause similar conformational changes. The present work also demonstrates the potential application of biosensor technology in environmental toxicological research.  相似文献   

15.
A study was made of the functional state of the epidermal growth factor (EGF)--receptor complexes in A-431 cells. Conditions of surface bound EGF extraction were selected which allow to consider the intracellular EGF--receptor complexes only. A procedure of high efficient and specific immunoprecipitation of tyrosyl-phosphorylated EGF receptors was developed. It is shown that the dissociation of EGF--receptor complexes leads to receptor dephosphorylation due to a rapid and reversible inactivation of EGF receptor tyrosine kinase. The internalized receptor is found to be tyrosyl-phosphorylated and to retain tyrosine kinase for at least an hour after the internalization. The dynamics of dissociation, degradation and dephosphorylation of EGF--receptor complexes has been estimated. The rates of these processes prove to be almost negligible for the first 2.5 hours after internalization.  相似文献   

16.
Over the range 20-52 degrees C thermal inactivation of malate dehydrogenase (MDH) was studied with the aim of well grounded choice of its stabilization ways. The process was described by the pseudofirst order rate constants, kin, dependent on enzyme concentration. The rate constant of enzyme inactivation at the "infinite" dilution in general form equals 1.40 X 10(27) X exp (-43 000/RT) s-1, whereas at high enzyme concentration it is 1.26 X 10(8) X exp (-17 700/RT) s-1. The limiting step of the MDH inactivation is the enzyme dissociation into its subunits. In the concentrated enzyme solution a protein association is accompanied by its stabilization. The methods of characterization of oligomeric proteins dissociative inactivation are discussed.  相似文献   

17.
Adenosine triphosphate phosphoribosyltransferase is inactivated rapidly by bulky alkylating reagents in a biphasic reaction. The initial inactivation rate is dependent upon an optimal concentration of histidine and is more rapid at low enzyme concentrations and low ionic strength. A histidine-free dimer form of the enzyme is the proposed reactive species. The dimer is shown by ultraviolet difference spectroscopy to bind histidine about 1 order of magnitude more weakly than the hexameric form of the enzyme. Alkylated enzyme is similar to native enzyme in dissociation and histidine-binding properties. Native enzyme must exist at significant levels in at least five different conformational and dissociative states to account for the inactivation behavior.  相似文献   

18.
The effects of the scorpion alpha-toxins Lqh II, Lqh III, and LqhalphaIT on human cardiac sodium channels (hH1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins removed fast inactivation with EC(50) values of <2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhalphaIT). Association and dissociation rates of Lqh III were much slower than those of Lqh II and LqhalphaIT, such that Lqh III would not dissociate from the channel during a cardiac activation potential. The voltage dependence of toxin dissociation from hH1 channels was nearly the same for all toxins tested, but it was different from that found for skeletal muscle sodium channels (muI; Chen et al. 2000). These results indicate that the voltage dependence of toxin binding is a property of the channel protein. Toxin dissociation remained voltage dependent even at high voltages where activation and fast inactivation is saturated, indicating that the voltage dependence originates from other sources. Slow inactivation of hH1 and muI channels was significantly enhanced by Lqh II and Lqh III. The half-maximal voltage of steady-state slow inactivation was shifted to negative values, the voltage dependence was increased, and, in particular for hH1, slow inactivation at high voltages became more complete. This effect exceeded an expected augmentation of slow inactivation owing to the loss of fast inactivation and, therefore, shows that slow sodium channel inactivation may be directly modulated by scorpion alpha-toxins.  相似文献   

19.
A M Traish  D F Williams  H H Wotiz 《Steroids》1989,53(1-2):169-193
The effects of sucrose on androgen binding to its receptor were investigated. Sucrose decreased the rate of thermal inactivation of unoccupied and occupied androgen receptor (AR) and the rates of [3H]5 alpha-dihydrotestosterone [( 3H]DHT) dissociation from both activated and nonactivated AR complexes. Binding of [3H]DHT to AR in vivo, or in intact cells at 37 degrees C, caused reduction of [3H]DHT dissociation from cytosolic and nuclear complexes, as compared to in vitro labeled receptor complexes. Further, exposure of these complexes to sucrose at 0 degrees C caused an additional reduction of dissociation rates. Thus, the decrease of [3H]DHT dissociation induced by sucrose is independent of the reaction that reduces DHT dissociation from activated and transformed AR. Sucrose also reduced the ability of mersalyl acid to inactivate AR complexes. This effect of sucrose was markedly diminished in the presence of 2M urea. Sucrose did not significantly affect the association rate, sedimentation properties, or nuclear binding ability of AR complexes, but it did decrease the equilibrium dissociation constant. Other monosaccharides and disaccharides also stabilized AR. These data suggest that sucrose induces conformational changes in the steroid binding domain of androgen receptor, thereby reducing the rates of inactivation, steroid dissociation, and the accessibility of sulfhydryl groups to mersalyl.  相似文献   

20.
Heat shock (HS) activates mitogen-activated protein (MAP) kinases. Although prior exposure to nonlethal HS makes cells refractory to the lethal effect of a subsequent HS, it is unclear whether this also occurs in MAP kinase activation. This study was undertaken to evaluate the effect of a heat pretreatment on MAP kinase activation by a subsequent HS and to elucidate its possible mechanism. Preheating did not make BEAS-2B cells refractory to extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) activation by a second HS but accelerated their inactivation after HS. The rapid inactivation of ERK and JNK was dependent on de novo protein synthesis and associated with the up-regulation of heat shock protein 70 (HSP70). Moreover, the inhibition of phosphatase activity reversed this rapid inactivation. MAP kinase phosphatase-1 (MKP-1) expression was increased by HS, and the presence of its phosphorylated form (p-MKP-1) correlated with the observed rapid ERK and JNK inactivation. Blocking induction of p-MKP-1 with antisense MKP-1 oligonucleotides suppressed the rapid inactivation of ERK and JNK in preheated cells. HSP70 overexpression caused the early phosphorylation of MKP-1. Moreover, MKP-1 phosphorylation and the rapid inactivation of ERK were inhibited by blocking HSP70 induction in preheated cells. In addition, MKP-1 was insolubilized by HS, and HSP70 associated physically with MKP-1, suggesting that a chaperone effect of HSP70 might have caused the early phosphorylation of MKP-1. These results indicate that preheating accelerated MAP kinase inactivation after a second HS and that this is related to a HSP70-mediated increase in p-MKP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号