首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organization of the actin cytoskeleton can be regulated by soluble factors that trigger signal transduction events involving the Rho family of GTPases. Since adhesive interactions are also capable of organizing the actin-based cytoskeleton, we examined the role of Cdc42-, Rac-, and Rho-dependent signaling pathways in regulating the cytoskeleton during integrin-mediated adhesion and cell spreading using dominant-inhibitory mutants of these GTPases. When Rat1 cells initially adhere to the extracellular matrix protein fibronectin, punctate focal complexes form at the cell periphery. Concomitant with focal complex formation, we observed some phosphorylation of the focal adhesion kinase (FAK) and Src, which occurred independently of Rho family GTPases. However, subsequent phosphorylation of FAK and paxillin occurs in a Rho-dependent manner. Moreover, we found Rho dependence of the assembly of large focal adhesions from which actin stress fibers radiate. Initial adhesion to fibronectin also stimulates membrane ruffling; we show that this ruffling is independent of Rho but is dependent on both Cdc42 and Rac. Furthermore, we observed that Cdc42 controls the integrin-dependent activation of extracellular signal–regulated kinase 2 and of Akt, a kinase whose activity has been demonstrated to be dependent on phosphatidylinositol (PI) 3-kinase. Since Rac-dependent membrane ruffling can be stimulated by PI 3-kinase, it appears that Cdc42, PI 3-kinase, and Rac lie on a distinct pathway that regulates adhesion-induced membrane ruffling. In contrast to the differential regulation of integrin-mediated signaling by Cdc42, Rac, and Rho, we observed that all three GTPases regulate cell spreading, an event that may indirectly control cellular architecture. Therefore, several separable signaling pathways regulated by different members of the Rho family of GTPases converge to control adhesion-dependent changes in the organization of the cytoskeleton, changes that regulate cell morphology and behavior.  相似文献   

2.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites.  相似文献   

3.
An enhanced tyrosine phosphorylation of focal adhesion kinase (FAK) is elicited during neuronal growth cone remodeling and requires the maintenance of agonist-sensitive pools of phosphatidylinositol 4,5-bisphosphate (PIP2). Rho family GTPases are putative regulators of both PIP2 synthesis and growth cone remodeling, including neurite outgrowth elicited by muscarinic cholinergic receptor (mAChR) stimulation. In this study, we investigated the interrelationships among Rho family GTPases, PIP2 synthesis, and mAChR signaling to FAK in SH-SY5Y neuroblastoma cells. Preincubation with Clostridium difficile toxin B (Tox B), an inhibitor of Rho, Rac, and Cdc42, attenuated mAChR-stimulated FAK and paxillin tyrosine phosphorylation and lysophosphatidic acid (LPA)-induced FAK phosphorylation to a similar extent (75% decreases at 200 pg/ml Tox B) but did not affect mitogen-activated protein kinase activation elicited by either phorbol ester or an mAChR agonist. In contrast, preincubation with selective inhibitors of either Rho (C3 exoenzyme) or Rho kinase (HA-1 077) resulted in 80-90% reductions in LPA-induced FAK phosphorylation but only 40-50% decreases in mAChR-stimulated phosphorylation. Moreover, mAChR-mediated FAK phosphorylation was significantly attenuated in cells scrape-loaded with dominant-negative N17Cdc42 but not N17Rac1. Tox B had little or no effect on agonist-sensitive pools of PIP2 but inhibited mAChR-driven actin cytoskeletal remodeling. The results suggest that the Rho family GTPases, Rho and Cdc42, link mAChR stimulation to increases in FAK phosphorylation independently of effects on PIP2 synthesis.  相似文献   

4.
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.  相似文献   

5.
Tetraspanin CD151 associates with laminin-binding α(3)β(1)/α(6)β(1) integrins in epithelial cells and regulates adhesion-dependent signaling events. We found here that CD151 plays a role in recruiting Ras, Rac1, and Cdc42, but not Rho, to the cell membrane region, leading to the formation of α(3)β(1)/α(6)β(1) integrin-CD151-GTPases complexes. Furthermore, cell adhesion to laminin enhanced CD151 association with β(1) integrin and, thereby, increased complex formation between the β(1) family of integrins and small GTPases, Ras, Rac1, and Cdc42. Adhesion receptor complex-associated small GTPases were activated by CD151-β(1) integrin complex-stimulating adhesion events, such as α(3)β(1)/α(6)β(1) integrin-activating cell-to-laminin adhesion and homophilic CD151 interaction-generating cell-to-cell adhesion. Additionally, FAK and Src appeared to participate in this adhesion-dependent activation of small GTPases. However, engagement of laminin-binding integrins in CD151-deficient cells or CD151-specific siRNA-transfected cells did not activate these GTPases to the level of cells expressing CD151. Small GTPases activated by engagement of CD151-β(1) integrin complexes contributed to CD151-induced cell motility and MMP-9 expression in human melanoma cells. Importantly, among the four tetraspanin proteins that associate with β(1) integrin, only CD151 exhibited the ability to facilitate complex formation between the β(1) family of integrins and small GTPases and stimulate β(1) integrin-dependent activation of small GTPases. These results suggest that CD151 links α(3)β(1)/α(6)β(1) integrins to Ras, Rac1, and Cdc42 by promoting the formation of multimolecular complexes in the membrane, which leads to the up-regulation of adhesion-dependent small GTPase activation.  相似文献   

6.
Activated Raf kinases and Rac GTPases were shown to cooperate in the oncogenic transformation of fibroblasts, which is characterised by the disassembly of the cellular actin cytoskeleton, a nearly complete loss of focal adhesion complexes and deregulated cell proliferation. This is surprising since the Rac GTPase induces actin structures and the adhesion of suspended cells to extracellular matrix proteins. NIH 3T3 cells expressing a hydroxytamoxifen-inducible oncogenic c-Raf-1-oestrogen receptor fusion protein (c-Raf-1-BxB-ER, N-BxB-ER cells) undergo morphological transformation upon stimulation of the Raf kinase. We show that treatment with the Rac, Rho and Cdc42 activating Escherichia coli toxin CNF1 or coexpression of an activated RacV12 mutant partially inhibits and reverses the disassembly of cellular actin structures and focal adhesion complexes by oncogenic Raf. Activation of the Rac GTPase restores actin structures and focal adhesion complexes at the cellular boundary, leading to spreading of the otherwise spindle-shaped Raf-transformed cells. Actin stress fibres, however, which are regulated by the function of the Rho GTPase, are disassembled by oncogenic Raf even in the presence of activated Rac and Rho. With respect to the RacV12-mediated spreading of Raf-transformed cells, we postulate an anti-oncogenic function of the activated Rac. Another feature of cell transformation is the deregulation of cell cycle control. NIH 3T3 cells expressing high levels of the c-Raf-1-BxB-ER protein undergo a cell cycle arrest upon stimulation of the oncogenic Raf kinase. Our results show that in N-BxB-ER-RacV12 cells the expression of the activated RacV12 mediates cell proliferation in the presence of high-intensity Raf signals and high levels of the Cdk inhibitor p21(Cip1). These results indicate a pro-oncogenic function of the Rac GTPase with respect to the deregulation of cell cycle control.  相似文献   

7.
Previously, we reported insulin-like growth factor-I (IGF-I) promotes motility and focal adhesion kinase (FAK) activation in neuronal cells. In the current study, we examined the role of IGF-I in Schwann cell (SC) motility. IGF-I increases SC process extension and motility. In parallel, IGF-I activates IGF-I receptor, insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3 (PI-3)-kinase, and FAK. LY294002, a PI-3 kinase inhibitor, blocks IGF-I-induced motility and FAK phosphorylation. The Rho family of GTPases is important in the regulation of the cytoskeleton. Overexpression of constitutively active Leu-61 Cdc42 and Val-12 Rac1 enhances SC motility which is unaffected by LY294002. In parallel, stable transfection of SC with dominant negative Asn-17 Rac1 blocks IGF-I-mediated SC motility and FAK phosphorylation, implying Rac is an upstream regulator of FAK. Collectively our results suggest that IGF-I regulates SC motility by reorganization of the actin cytoskeleton via the downstream activation of a PI-3 kinase, small GTPase, and FAK pathway.  相似文献   

8.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

9.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

10.
Neurons extend neurites from the cell body before formation of the polarized processes of an axon and dendrites. Neurite outgrowth involves remodeling of the cytoskeletal components, which are initially regulated by small GTPases of the Rho family. Here we show that c-Jun N-terminal kinase (JNK), which is controlled by Rho GTPases Rac1 and Cdc42, is activated following neurite extension in mouse N1E-115 neuroblastoma cells as a model. The extension is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) and Clostridium difficile Toxin B, the inhibitor for Rho GTPases. Additionally, paxillin, the multifunctional focal adhesion protein, is phosphorylated at Ser 178 by upregulation of the Rac1/Cdc42/JNK cascade. Conversely, transfection of the paxillin construct harboring the Ser 178-to-Ala mutation into cells inhibits neurite extension. Taken together, these results suggest the novel role of the Rac1/Cdc42/JNK signaling cascade in neurite extension and indicate that the downstream target paxillin may be one of the convergent points of various signaling pathways underlying neurite extension.  相似文献   

11.
E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120ctn interacts with E-cadherin, because p120ctn localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Rho family GTPases; catenin; polarity; sorting; actin  相似文献   

12.
Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDia1 by RNA interference and found that mDia1 depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Apc and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.  相似文献   

13.
Regulation of neuronal morphology and activity-dependent synaptic modifications involves reorganization of the actin cytoskeleton. Dynamic changes of the actin cytoskeleton in many cell types are controlled by small GTPases of the Rho family, such as RhoA, Rac1 and Cdc42. As key regulators of both actin and microtubule cytoskeleton, Rho GTPases have also emerged as important regulators of dendrite and spine structural plasticity. Multiple studies suggest that Rac1 and Cdc42 are positive regulators promoting neurite outgrowth and growth cone protrusion, while the activation of RhoA induces stress fiber formation, leading to growth cone collapse and neurite retraction. This review focuses on recent advances in our understanding of the molecular mechanisms underlying physiological and pathological functions of Cdc42 in the nervous system. We also discuss application of different FRET-based biosensors as a powerful approach to examine the dynamics of Cdc42 activity in living cells.  相似文献   

14.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

15.
The movement of a metazoan cell entails the regulated creation and turnover of adhesions with the surface on which it moves. Adhesion sites form as a result of signaling between the extracellular matrix on the outside and the actin cytoskeleton on the inside, and they are associated with specific assembles of actin filaments. Two broad categories of adhesion sites can be distinguished: (1) "focal complexes" associated with lamellipodia and filopodia that support protrusion and traction at the cell front; and (2) "focal adhesions" at the termini of stress fibre bundles that serve in longer term anchorage. Focal complexes are signaled via Rac1 or Cdc42 and can either turnover on a minute scale or differentiate, via intervention of the RhoA pathway, into longer-lived focal adhesions. All classes of adhesion sites depend on the stress in the actin cytoskeleton for their formation and maintenance. Different cell types use different adhesion strategies to move, in terms of the relative engagement of filopodia and lamellipodia in focal complex formation and protrusion and the extent of focal adhesion formation. These differences can be attributed to variations in the relative activities of Rho family members. However, the Rho GTPases alone are unable to signal asymmetry in the actin cytoskeleton, necessary for polarisation and movement. Polarisation requires the collaboration of the microtubule cytoskeleton. Changes in the polymerisation state of microtubules influences the activities of both Rac1 and RhoA and microtubules interact directly with adhesion foci and promote their turnover. Possible mechanisms of cross-talk between the microtubule and actin cytoskeletons in determining polarity are discussed.  相似文献   

16.
Migration of crawling cells (amoebae and some kinds of the tissue cells) is a process related to the dynamic reorganization of actomyosin cytoskeleton. That reorganization engages actin polymerization and de-polymerization, branching of actin network and interaction of myosin II with actin filaments. All those cytoskeleton changes lead to the cell progression, contraction and shifting of the uropod and the cell adhesion. Numerous external stimuli, which activate various surface receptors and signal transduction pathways, can promote migration. Rho family proteins play an important role in the regulation of actin cytoskeleton organization. The most known members of this family are Rho, Rac and Cdc42 proteins, present in all mammalian tissue cells. These proteins control three different stages of cell migration: progression of the frontal edge, adhesion which stabilizes the frontal area, and de-adhesion and shifting of the uropod. Cdc42 and Rac control cell polarization, lamellipodium formation and expansion, organization of focal complexes. Rho protein regulates contractile activity of actomyosin cytoskeleton outside the frontal area, and thus contraction and de-adhesion of the uropod.  相似文献   

17.
Ellis S  Mellor H 《Current biology : CB》2000,10(21):1387-1390
Small GTPases of the Rho family have a critical role in controlling cell morphology, motility and adhesion through dynamic regulation of the actin cytoskeleton [1,2]. Individual Rho GTPases have been shown to regulate distinct components of the cytoskeletal architecture; RhoA stimulates the bundling of actin filaments into stress fibres [3], Rac reorganises actin to produce membrane sheets or lamellipodia [4] and Cdc42 causes the formation of thin, actin-rich surface projections called filopodia [5]. We have isolated a new Rho-family GTPase, Rif (Rho in filopodia), and shown that it represents an alternative signalling route to the generation of filopodial structures. Coordinated regulation of Rho-family GTPases can be used to generate more complicated actin rearrangements, such as those underlying cell migration [6]. In addition to inducing filopodia, Rif functions cooperatively with Cdc42 and Rac to generate additional structures, increasing the diversity of actin-based morphology.  相似文献   

18.
Extracellular signals regulate actin dynamics through small GTPases of the Rho/Rac/Cdc42 (p21) family. Here we show that p21-activated kinase (Pak1) phosphorylates LIM-kinase at threonine residue 508 within LIM-kinase's activation loop, and increases LIM-kinase-mediated phosphorylation of the actin-regulatory protein cofilin tenfold in vitro. In vivo, activated Rac or Cdc42 increases association of Pak1 with LIM-kinase; this association requires structural determinants in both the amino-terminal regulatory and the carboxy-terminal catalytic domains of Pak1. A catalytically inactive LIM-kinase interferes with Rac-, Cdc42- and Pak1-dependent cytoskeletal changes. A Pak1-specific inhibitor, corresponding to the Pak1 autoinhibitory domain, blocks LIM-kinase-induced cytoskeletal changes. Activated GTPases can thus regulate actin depolymerization through Pak1 and LIM-kinase.  相似文献   

19.
Diurnal phagocytosis of shed photoreceptor outer-segment particles by retinal pigment epithelial (RPE) cells belongs to a group of conserved clearance mechanisms employing αv integrins upstream of tyrosine kinases and Rho GTPases. In this study, we tested the interdependence of the tyrosine kinases focal adhesion kinase (FAK) and Mer tyrosine kinase (MerTK) and Rho GTPases during engulfment. RPE cells activated and redistributed Rac1, but not RhoA or Cdc42, during phagocytosis. Toxin B, overexpression of dominant-negative Rac1, or decreasing Rac1 expression prevented particle engulfment. Fluorescence microscopy showed that Rac1 inhibition had no obvious effect on F-actin arrangement in resting RPE but prevented recruitment of F-actin to surface-bound phagocytic particles. Quantification of active GTP-Rac1 in wild-type and mutant RPE in culture and in vivo revealed that Rac1 activation during phagocytosis requires αvβ5 integrin and its ligand milk fat globule EGF factor-8 (MFG-E8) but not the receptor tyrosine kinase MerTK. Abolishing tyrosine kinase signaling downstream of αvβ5 toward MerTK by inhibiting FAK specifically or tyrosine kinases generally neither prevented Rac1 activation nor F-actin recruitment during phagocytosis. Likewise, inhibiting Rac1 had no effect on FAK or MerTK activation. We conclude that MerTK activation via FAK and F-actin recruitment via Rac1 both require MFG-E8-ligated αvβ5 integrin. Both pathways are independently activated and required for clearance phagocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号