首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selectins mediate tethering and rolling of leukocytes along the endothelium in a shear force-dependent manner. This key step in the cellular immune response is a target for experimental anti-inflammatory therapies. In the present paper we have examined the inhibitory activity of the minimal selectin ligand sialyl Lewis x (SiaLe(x)), its isomer sialyl Lewis a (SiaLe(a)) and sulfated tyrosine (sTyr) residues under dynamic flow reflecting the rheological conditions in the blood stream. The monomeric ligands were compared to multivalent polyacrylamide (PAA)-based conjugates under defined flow conditions on the molecular level, using surface plasmon resonance (SPR) technology, and on the cellular level, using a parallel-plate flow chamber. SPR measurements showed that a spatial arrangement of binding epitopes mimicking the selectin binding motif of the natural ligand PSGL-1 inhibits L-selectin binding successfully with IC(50) values in the nanomolar range. Using a flow chamber adhesion assay it could be shown that the multivalent inhibitors efficiently blocked rolling and tethering of NALM-6 pre-B cells transfected with human L-selectin to activated endothelium and that the inhibitory activity increased with rising shear stress. While PAA-conjugates were almost not inhibitory at low shear stress, NALM-6 cell rolling was nearly completely inhibited at high shear stress. The results indicate that multimeric conjugates of SiaLe(x), SiaLe(a) and sTyr are highly effective inhibitors of L-selectin-mediated cell adhesion particularly under flow conditions. Consequently, SiaLe(x), SiaLe(a) and/or sTyr on macromolecular carriers may be promising candidates for anti-inflammatory therapy.  相似文献   

2.
The mutagenesis of a glucoamylase-producing A. awamori strain yielded a mutant exhibiting an 80% increase in the level of the biosynthesis of this enzyme under liquid state fermentation conditions (LSF).  相似文献   

3.
4.
5.
An Arabidopsis mutant with enhanced resistance to powdery mildew.   总被引:20,自引:0,他引:20       下载免费PDF全文
C A Frye  R W Innes 《The Plant cell》1998,10(6):947-956
We have identified an Arabidopsis mutant that displays enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. The edr1 mutant does not constitutively express the pathogenesis-related genes PR-1, BGL2, or PR-5 and thus differs from previously described disease-resistant mutants of Arabidopsis. E. cichoracearum conidia (asexual spores) germinated normally and formed extensive hyphae on edr1 plants, indicating that the initial stages of infection were not inhibited. Production of conidiophores on edr1 plants, however, was <16% of that observed on wild-type Arabidopsis. Reduction in sporulation correlated with a more rapid induction of defense responses. Autofluorescent compounds and callose accumulated in edr1 leaves 3 days after inoculation with E. cichoracearum, and dead mesophyll cells accumulated in edr1 leaves starting 5 days after inoculation. Macroscopic patches of dead cells appeared 6 days after inoculation. This resistance phenotype is similar to that conferred by "late-acting" powdery mildew resistance genes of wheat and barley. The edr1 mutation is recessive and maps to chromosome 1 between molecular markers ATEAT1 and NCC1. We speculate that the edr1 mutation derepresses multiple defense responses, making them more easily induced by virulent pathogens.  相似文献   

6.
7.
The LexA repressor from Escherichia coli is a sequence-specific DNA binding protein that shows no pronounced sequence homology with any of the known structural motifs involved in DNA binding. Since little is known about how this protein interacts with DNA, we have selected and characterized a great number of intragenic, second-site mutations which restored at least partially the activity of LexA mutant repressors deficient in DNA binding. In 47 cases, the suppressor effect of these mutations was due to an Ind- phenotype leading presumably to a stabilization of the mutant protein. With one exception, these second-site mutations are all found in a small cluster (amino acid residues 80 to 85) including the LexA cleavage site between amino acid residues 84 and 85 and include both already known Ind- mutations as well as new variants like GN80, GS80, VL82 and AV84. The remaining 26 independently isolated second-site suppressor mutations all mapped within the amino-terminal DNA binding domain of LexA, at positions 22 (situated in the turn between helix 1 and helix 2) and positions 57, 59, 62, 71 and 73. These latter amino acid residues are all found beyond helix 3, in a region where we have previously identified a cluster of LexA (Def) mutant repressors. In several cases the parental LexA (Def) mutation has been removed by subcloning or site-directed mutagenesis. With one exception, these LexA variants show tighter in vivo repression than the LexA wild-type repressor. The most strongly improved variant (LexA EK71, i.e. Glu71----Lys) that shows an about threefold increased repression rate in vivo, was purified and its binding to a short consensus operator DNA fragment studied using a modified nitrocellulose filter binding assay. As expected from the in vivo data, LexA EK71 interacts more tightly with both operator and (more dramatically) with non-operator DNA. A determination of the equilibrium association constants of LexA EK71 and LexA wild-type as a function of monovalent salt concentration suggests that LexA EK71 might form an additional ionic interaction with operator DNA as compared to the LexA wild-type repressor. A comparison of the binding of LexA to a non-operator DNA fragment further shows that LexA interacts with the consensus operator very selectively with a specificity factor of Ks/Kns of 1.4 x 10(6) under near-physiological salt conditions.  相似文献   

8.
1. The effect of systematic error (loss of ligand, complex or macromolecule) on three of the experimental designs by which equilibrium dialysis may be used to quantify the interaction of ligand and macromolecule is examined theoretically, and the design that is least sensitive to systematic error is identified. 2. Thirteen methods for fitting the binding isotherm to experimental data are compared by using them to analyse simulated data containing random error, and the most reliable method is identified.  相似文献   

9.
DNA minor groove ligands provide a paradigm for double-stranded DNA recognition, where common structural motifs provide a crescent shape that matches the helix turn. Since minor groove ligands are useful in medicine, new ligands with improved binding properties based on the structural information about DNA-ligand complexes could be useful in developing new drugs. Here, two new synthetic analogues of AT specific Hoechst 33258 5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxyphenyl)-5'-benzimidazolyl] benzimidazole (DMA) and 5-(4-methylpiperazin-1-yl)-2-[2'[2'-(4-hydroxy-3-methoxyphenyl)-5' '-benzimidazolyl]-5'-benzimidazolyl] benzimidazole (TBZ) were evaluated for their DNA binding properties. Both analogues are bisubstituted on the phenyl ring. DMA contains two ortho positioned methoxy groups, and TBZ contains a phenolic group at C-4 and a methoxy group at C-3. Fluorescence yield upon DNA binding increased 100-fold for TBZ and 16-fold for DMA. Like the parent compound, the new ligands showed low affinity to GC-rich (K approximately 4 x 10(7) M(-1)) relative to AT-rich sequences (K approximately 5 x 10(8) M(-1)), and fluorescence lifetime and anisotropy studies suggest two distinct DNA-ligand complexes. Binding studies indicate expanded sequence recognition for TBZ (8-10 AT base pairs) and tighter binding (DeltaT(m) of 23 degrees C for d (GA(5)T(5)C). Finally, EMSA and equilibrium binding titration studies indicate that TBZ preferentially binds highly hydrated duplex domains with altered A-tract conformations d (GA(4)T(4)C)(2) (K= 3.55 x 10(9) M(-1)) and alters its structure over d (GT(4)A(4)C)(2) (K = 3.3 x 10(8) M(-1)) sequences. Altered DNA structure and higher fluorescence output for the bound fluorophore are consistent with adaptive binding and a constrained final complex. Therefore, the new ligands provide increased sequence and structure selective recognition and enhanced fluorescence upon minor groove binding, features that can be useful for further development as probes for chromatin structure stability.  相似文献   

10.
The glbN gene of the cyanobacterium Nostoc commune UTEX 584 encodes a hemoprotein, named cyanoglobin, that has high oxygen affinity. The basis for the high oxygen affinity of cyanoglobin was investigated through kinetic studies that utilized stopped-flow spectrophotometry and flash photolysis. Association and dissociation rate constants were measured at 20 degrees C for oxygen, carbon monoxide, nitric oxide, and methyl and ethyl isocyanides. The association rate constants for the binding of these five ligands to cyanoglobin are the highest reported for any naturally occurring hemoglobin, suggesting an unhindered and apolar ligand binding pocket. Cyanoglobin also shows high rates of autoxidation and hemin loss, indicating that the prosthetic group is readily accessible to solvent. The ligand binding behavior of cyanoglobin was more similar to that of leghemoglobin a than to that of sperm whale myoglobin. Collectively, the data support the model of cyanoglobin function described by Hill et al. [(1996) J. Bacteriol. 178, 6587-6598], in which cyanoglobin sequesters oxygen, and presents it to, or is a part of, a terminal cytochrome oxidase complex in Nostoc commune UTEX 584 under microaerobic conditions, when nitrogen fixation, and thus ATP demand, is maximal.  相似文献   

11.
Isothermal titration calorimetry measurements are reported which give important new binding constant (Kd) information for various substrate and inhibitor complexes of Escherichia coli EPSP synthase (EPSPS). The validity of this technique was first verified by determining Kd's for the known binary complex with the substrate, shikimate 3-phosphate (S3P), as well as the herbicidal ternary complex with S3P and glyphosate (EPSPS.S3P.glyphosate). The observed Kd's agreed very well with those from previous independently determined kinetic and fluorescence binding measurements. Further applications unequivocally demonstrate for the first time a fairly tight interaction between phosphoenolpyruvate (PEP) and free enzyme (Kd = 390 microM) as well as a correspondingly weak affinity for glyphosate (Kd = 12 mM) alone with enzyme. The formation of the EPSPS.PEP binary complex was independently corroborated using equilibrium dialysis. These results strongly suggest that S3P synergizes glyphosate binding much more effectively than it does PEP binding. These observations add important new evidence to support the hypothesis that glyphosate acts as a transition-state analogue of PEP. However, the formation of a catalytically productive PEP binary complex is inconsistent with the previously reported compulsory binding order process required for catalysis and has led to new studies which completely revise the overall EPSPS kinetic mechanism. A previously postulated ternary complex between S3P and inorganic phosphate (EPSPS.S3P.Pi, Kd = 4 mM) was also detected for the first time. Quantitative binding enthalpies and entropies were also determined for each ligand complex from the microcalorimetry data. These values demonstrate a clear difference in thermodynamic parameters for recognition at the S3P site versus those observed for the PEP, Pi, and glyphosate sites.  相似文献   

12.
All alpha-interferons (IFNalpha) bind the IFNAR1 receptor subunit with low affinity. Increasing the binding affinity was shown to specifically increase the antiproliferative potency of IFNalpha2. Here, we constructed a phage display library by randomizing three positions on IFNalpha2 previously shown to confer weak binding to IFNAR1. The tightest binding variant selected, comprised of mutations H57Y, E58N, and Q61S (YNS), was shown to bind IFNAR1 60-fold tighter compared with wild-type IFNalpha2, and 3-fold tighter compared with IFNbeta. Binding of YNS to IFNAR2 was comparable with wild-type IFNalpha2. The YNS mutant conferred a 150-fold higher antiproliferative potency in WISH cells compared with wild-type IFNalpha2, whereas its antiviral activity was increased by only 3.5-fold. The high antiproliferative activity was related to an induction of apoptosis, as demonstrated by annexin V binding assays, and to specific gene induction, particularly TRAIL. To determine the potency of the YNS mutant in a xenograft cancer model, we injected it twice a week to nude mice carrying transplanted MDA231 human breast cancer cells. After 5 weeks, no tumors remained in mice treated with YNS, whereas most mice treated with wild-type IFNalpha2 showed visible tumors. Histological analysis of these tumors showed a significant anti-angiogenic effect of YNS, compared with wild-type IFNalpha2. This work demonstrates the application of detailed biophysical understanding in the process of protein engineering, yielding an interferon variant with highly increased biological potency.  相似文献   

13.
Dai XL  Sun YX  Jiang ZF 《FEBS letters》2007,581(7):1269-1274
Amyloid-beta peptide (Abeta), the major constituent of senile plaques in the Alzheimer's disease (AD) brain, is the main source of oxidative stress leading to neurodegeneration. The methionine residue in this peptide is reported to be responsible for neurotoxicity. Structurally similar substitution with methionine 35 replaced by cysteine in Abeta(40) was synthesized, and this result in enhanced beta-sheet structures according to both circular dichroism (CD) spectra and beta-fibril specific fluorescence assay but attenuated cytotoxicity whether in the presence of copper or not. These findings may provide further evidence on disclosing the connection between amyloid beta-aggregation and Abeta-induced neurotoxicity.  相似文献   

14.
15.
The rheology of blood is characterized by shear thinning, viscoelasticity, and thixotropy. Its rheological evaluation is usually accomplished using a torque balance technique during rotational viscometry. Because a stable torque balance does not develop instantly, studies of thixotropy and viscoelasticity of blood have usually been carried out only at low shear rate where their development is slow enough to be monitored accurately. The torque balance technique may be converted from static to dynamic by incorporating the rate of change of sensing system angular momentum. We have modified our Couette viscometer, adding a computer-controlled stepping motor and a second digital voltmeter. The latter is used to determine the angular position of the sensing system every 25 or 50 msec. The new approach allows rapid observation of the development and disappearance of shear stress, enabling us to examine the transient behavior of blood at moderate shear rate (1 to 100 inverse seconds). The transient flow behavior of blood at moderate shear rate is most easily compared directly with the behavior of Newtonian fluids. We present information about the response of our system using a torque balance observation rate of 20 per second. Blood's viscoelasticity is observed to fall substantially as shear rate rises, while its thixotropic transient excess stress rises steadily with increasing shear rate.  相似文献   

16.
Escherichia coli flavohemoglobin has been shown to be able to bind specifically unsaturated and/or cyclopropanated fatty acids with very high affinity. Unsaturated or cyclopropanated fatty acid binding results in a modification of the visible absorption spectrum of the ferric heme, corresponding to a transition from a pentacoordinated (typical of the ligand free protein) to a hexacoordinated, high spin, heme iron. In contrast, no detectable interaction has been observed with saturated fatty acid, saturated phospholipids, linear, cyclic, and aromatic hydrocarbons pointing out that the protein recognizes specifically double bonds in cis conformation within the hydrocarbon chain of the fatty acid molecule. Accordingly, as demonstrated in gel filtration experiments, flavohemoglobin is able to bind liposomes obtained from lipid extracts of E. coli membranes and eventually abstract phospholipids containing cis double bonds and/or cyclopropane rings along the acyl chains. The presence of a protein bound lipid strongly affects the thermodynamic and kinetic properties of imidazole binding to the ferric protein and brings about significant modifications in the reactivity of the ferrous protein with oxygen and carbon monoxide. The effect of the bound lipid has been accounted for by a reaction scheme that involves the presence of two sites for the lipid/ligand recognition, namely, the heme iron and a non-heme site located in a loop region above the heme pocket.  相似文献   

17.
To investigate the interaction of the insulin-like growth factor (IGF) ligands with the insulin-like growth factor type 1 receptor (IGF-1R), we have generated two soluble variants of the IGF-1R. We have recombinantly expressed the ectodomain of IGF-1R or fused this domain to the constant domain from the Fc fragment of mouse immunoglobulin. The ligand binding properties of these soluble IGF-1Rs for IGF-I and IGF-II were investigated using conventional ligand competition assays and BIAcore biosensor technology. In ligand competition assays, the soluble IGF-1Rs both bound IGF-I with similar affinities and a 5-fold lower affinity than that seen for the wild type receptor. In addition, both soluble receptors bound IGF-II with similar affinities to the wild type receptor. BIAcore analyses showed that both soluble IGF-1Rs exhibited similar ligand-specific association and dissociation rates for IGF-I and for IGF-II. The soluble IGF-1R proteins both exhibited negative cooperativity for IGF-I, IGF-II, and the 24-60 antibody, which binds to the IGF-1R cysteine-rich domain. We conclude that the addition of the self-associating Fc domain to the IGF-1R ectodomain does not affect ligand binding affinity, which is in contrast to the soluble ectodomain of the IR. This study highlights some significant differences in ligand binding modes between the IGF-1R and the insulin receptor, which may ultimately contribute to the different biological activities conferred by the two receptors.  相似文献   

18.
The binding to DNA of a mixed function ligand (NETGA) is described, in which a potential intercalating group, an acridine moiety, is incorporated at the carboxyl terminus of the minor groove binding oligopeptide netropsin skeleton. Scatchard analysis of absorption data provided evidence of two modes of binding to DNA with K1 = 9.1 x 10(5) M-1 at low r values (0.003-0.1), and a binding site size n = 10, indicative of binding of both moeities. At high binding ratios (greater than 0.1), K2 = 0.9 x 10(5) M-1 and n = 5 corresponding to external binding. Complementary strand MPE footprinting on a pBR322 restriction fragment showed NETGA binds to 5'-AAAT like netropsin. It causes enhanced cleavage by MPE, particularly at G-C rich sequences and remote from the preferred binding sites. Viscometry measurements provided evidence for biphasic modes of the two binding portions of NETGA. Fluorescence polarization and linear dichroism measurements were in accord with distinct modes of interaction of the acridine (intercalation) and oligopeptide (minor groove binding) portions of NETGA. LD measurements on NETGA indicate that the oligopeptide moiety (netropsin-like) has an orientation typical of minor groove binders, whereas the degree of intercalation of the acridine group is decreased by association of the oligopeptide moiety.  相似文献   

19.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   

20.

The ability of a blood clot to modulate blood flow is determined by the clot’s resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain—and, therefore, clot occlusivity—was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner “core” region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号