首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All of the classically-described hypothalamic, hypophysiotropic factors that regulate anterior pituitary hormone secretion have now been isolated and identified except for prolactin releasing factor. We report here that the 39-amino acid glycopeptide comprising the carboxyterminus of the neurohypophysial vasopressin-neurophysin precursor stimulates prolactin release from cultured pituitary cells as potently as does thyrotropin releasing hormone but has no effect on the secretion of other pituitary hormones. Furthermore, antisera to the glycopeptide administered to lactating rats attenuated suckling-induced prolactin secretion. Thus, this glycopeptide appears to be the neurohypophysial prolactin releasing factor.  相似文献   

2.
The hypothalamic releasing and release-inhibiting peptides have multiple effects on more than one pituitary hormone. In this study the action of the two hypothalamic inhibiting factors, somatostatin (GH-IH) and MSH release-inhibiting factor, prolyl-leucyl-glycinamide (MIF), on ACTH release were studied. Increasing concentrations of GH-IH and MIF were added to 1 ml of a suspension of dispersed anterior pituitary cells from male rats. Both GH-IH and MIF (10?5 to 10?11 M) were without effect on basal ACTH secretion of normal and of adrenalectomized rats. However, both peptides, within certain concentration ranges, inhibited the ACTH release stimulated by rat hypothalamic extracts or by arginine vasopressin. The most effective concentrations were 35 nM MIF or 6 nM GH-IH. Beyond these concentrations no further suppression was observed. Our results indicate that somatostatin and MIF can inhibit ACTH release, but only in a state of steroid deprivation and within a limited dose range.  相似文献   

3.
The endocrine glands of the human foetus are active early in gestation, and various foetal and placental hormonal contributions are essential for growth and sexual differentiation. 1. The anterior pituitary gland has the ability to synthesize, store and secrete hormones early in gestation. The patterns of change in plasma concentrations of hGH (Fig. 1), ACTH, LH and FSH (Fig. 2) during gestation indicate that secretion is at a maximum at mid-gestation, followed by a progressive decrease towards term. The high levels at mid-gestation can be interpreted as due simultaneously to a high secretion rate, low peripheral catabolism and absence of feedback mechanism. In contrast, the secretions of PRL (Fig. 1) and TSH are moderate at mid-gestation and only increase in the last trimester of gestation. 2. Effective control by the central nervous system (CNS) of the pituitary secretions is still immature at mid-gestation. The presence in the foetal hypothalamus of releasing factors such as LRF (Fig. 5) and TRF, and of somatostatin (Fig. 6), a growth hormone release inhibiting factor (GIF), has been established. TRF and GIF, but not LRF, are also present in the cerebral cortex. It has been postulated that, early in life, relatively autonomous and unrestrained secretion of hypothalamic hypophysiotropic releasing factors occurs, and that, later in development, there is a maturation of inhibitory or restraining influences mediated via the CNS (feedback mechanisms) that modulates the secretion of the foetal adenohypophyseal hormones (Fig. 3 and 4). 3. Observations made with anencephalic newborn confirm that a functional hypothalamus is necessary during foetal life for the secretion of each of the hormones of the anterior pituitary gland with the exception of PRL, the secretion of which is normal in anencephaly. Although somatostatin probably participates in the regulation of hGH during foetal life, it appears evident from the anencephaly data that this regulation can only be fully understood by postulating the existence of a growth hormone releasing factor (GRF).  相似文献   

4.
Using the classical approach, a decapeptide was synthesized with the structure of porcine luteinizing hormone/follicle stimulating hormone releasing hormone reported by Matsuo, H., Baba, Y., Nair, R. M. G., Arimura, A. and Schally, A. V. (1971) Biochem. Biophys. Res. Commun. 43, 1393–1399. As already reported, this peptide was capable of inducing in vitro the release of luteinizing hormone and follicle stimulating hormone from rat pituitary glands. A specific antiserum against luteinizing hormone/follicle stimulating hormone releasing hormone has been generated in the guinea pig and this allowed the development of a radioimmunoassay for this peptide. The antisera, at a final dilution of to depending on the antiserum used, were able to bind 35% of the 131I-labelled antigen. The sensitivity of this assay method was 50 pg of luteinizing hormone/follicle stimulating hormone releasing hormone. The following substances did not cross-react: oxytocin, lysine-vasopressin, synthetic thyroid stimulating hormone releasing hormone, ovine luteinizing hormone, follicle stimulating hormone and prolactin. Des-Trp3 luteinizing hormone/follicle stimulating hormone releasing hormone, pyroglutamyl-histidyl-tryptophan and seryl-tyrosyl-glycyl-leucyl-arginyl-prolyl-glycinamide, exhibited flatter curves than luteinizing hormone/follicle stimulating hormone releasing hormone with a cross-reactivity of about . Using this method, luteinizing hormone/follicle stimulating hormone releasing hormone was assayed in extracts of the sheep stalk-median eminence and of the hypothalamus and in jugular vein blood from a normal ram and from normal male rats, from cyclic ewe and from hypophysectomized ram and rats. It was concluded that luteinizing hormone/follicle stimulating hormone releasing hormone is present in hypothalamic extracts and in plasma of sheep and rat.  相似文献   

5.

Background  

Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs). These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells.  相似文献   

6.
Rapid progress has been recorded recently in the understanding of the role of neuro-transmitters and neuropeptides in the control of reproduction and on their apparent potential in the regulation of fertility. Peptides, as well as monoamines, are important in the control of lutinizing hormone releasing hormone and gonadotropin release. The input from brainstem noradrenergic neurons as well as dopamine mediated stimulated release of lutinizing hormone. In addition considerable evidence exist for the occurrence of a specific follicle stimulating hormone-releasing factor. A large number of brain peptides affect the secretion of lutinizing hormone releasing hormone and the endogenous opioid peptides appear to have a physiologically important function in restraining the influence on lutinizing hormone releasing hormone release under most circumstances. Vasoactive intestinal peptide and substanceP stimulate whereas cholecystokinin, neurotensin, gastrin, secretin, somatostatin α-melanosite stimulating hormone and vasotocin inhibit lutinizing hormone release. Of the inhibitory peptides, cholecystokinin and arg-vasotocin are the most potent. Inhibin injected into the ventricle selectively suppresses follicle stimulating hormone release by a hypothalamic action. Thus the control of gonadotropin release is complex and a number of aminergic and peptidergic transmitters are involved.  相似文献   

7.
Bacitracin was found to be an effective inhibitor of the invitro degradation of both thyrotropin releasing factor1 (TRF) and luteinizing hormone releasing factor (LRF) by guinea pig hypothalamic and whole brain homegenates and rat hypothalamic homogenates and subcellular fractions. Bacitracin was effective in inhibiting the degradation of TRF and LRF, as determined by radioimmunoassay, where it exhibited no interference with the assays. Kinetic studies of the degradation of exogenous synthetic [3H]-TRF demonstrated non-competitive inhibition by bacitracin with Ki = 1.9 × 10?5 M, while studies on the degradation of [3H] LRF indicated competitive inhibition with Ki = 1.7 × 10?5 M. Electrophoretic and amino acid analysis revealed that bacitracin itself was not degraded during the course of the invitro incubation.  相似文献   

8.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

9.
P T M?nnist? 《Medical biology》1987,65(2-3):121-126
Remarkable progress has been made during recent years in the central regulation of the hypothalamic releasing and inhibiting factors and the respective anterior pituitary hormones. There are two nearly universal inhibitory organizations: short tuberoinfundibular dopamine (TIDA) neurons and somatostatinergic system originating from the periventricular hypothalamus and terminating to the median eminence. It is now known that e.g. dopamine, noradrenaline and acetylcholine enhance while 5-hydroxytryptamine and GABA inhibit somatostatin secretion. These transmitters are also involved in the regulation of all releasing factors and pituitary hormones. Clinical applications have been developed based on the regulation of prolactin and growth hormone. Inhibitory TIDA neurons are undoubtedly the major determinants of prolactin secretion. Hyperprolactinaemia is one of the most common endocrinological side-effects of the drugs antagonizing dopaminergic transmission. Expectedly, dopaminergic drugs (bromocryptine, lergotrile, piribedil, dopamine and levodopa) are quite effective in reducing high prolactin levels regardless of the reason. The secretion of growth hormone is predominantly under dual dopaminergic control: hypothalamic stimulation and pituitary inhibition. The former masters the function of the normal gland, while the peripheral inhibitory component takes over in acromegalic gland. Hence dopaminergic drugs are able to reduce elevated growth hormone levels in 30-50% of the acromegalic patients. In normal man, dopamine agonists increase growth hormone levels. An analogous situation can be seen in Cushing's disease regarding ACTH secretion.  相似文献   

10.
Morphine and the endogenous opioid peptides (EOP) exert similar effects on the neuroendocrine system. When adminstered acutely, they stimulate growth hormone (GH), prolactin (PRL), and adrenocorticotropin (ACTH) release, and inhibit release of luteinizing hormone (LH), follicle stimulating hormone (FSH),and thyrotropin (TSH). Recent studies indicate that the EOP probably have a physiological role in regulating pituitary hormone secretion. Thus injection of naloxone (opiate antagonist) alone in rats resulted in a rapid fall in serum concentrations of GH and PRL, and a rise in serum LH and FSH, suggesting that the EOP help maintain basal secretion of these hormones. Prior administration of naloxone or naltrexon inhibited stress-induced PRL release, and elevated serum LH in castrated male rats to greater than normal castrate levels. Studies on the mechanisms of action of the EOP and morphine on hormone secretion indicate that they have no direct effect on the pituitary, but act via the hypothalamus. There is no evidence that the EOP or morphine alter the action of the hypothalamic hypophysiotropic hormones on pituitary hormone secretion; they probably act via hypothalamic neurotransmitters to influence release of the hypothalamic hormones into the pituitary portal vessels. Preliminary observations indicate that they may increase serotonin and decrease dopamine metabolism in the hypothalamus, which could account for practically all of their effects on pituitary hormone secretion.  相似文献   

11.
Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males.  相似文献   

12.
A review is presented on progress in the research of stimulatory inputs that regulate growth hormone secretion, including recent results on the action of the hypothalamic peptides growth-hormone releasing factor (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP), as well as that of both peptidic (growth hormone-releasing hexapeptide; GHRP-6) and non-peptidyl (L-163,255) synthetic GHSs on somatotrope cell function.  相似文献   

13.
14.
Physiologic control of prolactin (PRL) secretion is largely dependent upon levels of dopamine accessing the adenohypophysis via the hypophysial portal vessels. However, it is clear that other factors of hypothalamic origin can modulate hormone secretion in the absence or presence of dopamine. Several neuropeptides have been identified as PRL releasing factors (PRFs) but none of these peptides appears to be a major determinant of PRL secretion in vivo. There remain uncharacterized activities in hypothalamic extracts that can alter secretion and production of the hormone. In addition, there exist a wide variety of substances (neurotransmitters, neuromodulators, neuropeptides) that can act within the hypothalamus to modify the neuroendocrine regulation of PRL secretion. These factors may not be considered true PRFs because their actions are not exerted directly at the level of the lactotroph; however, they can act in brain to stimulate PRL release in vivo and therefore might be considered PRL releasing peptides (PRPs).  相似文献   

15.
Dearth RK  Hiney JK  Dees WL 《Peptides》2000,21(3):387-392
Recent data generated from adult male and female rats indicates that leptin is capable of stimulating luteinizing hormone (LH) secretion via a hypothalamic action. Consequently, we hypothesized that this peptide may similarly play a role in controlling LH secretion during late juvenile and peripubertal development; hence, contributing to hypothalamic-pituitary function during sexual maturation. Therefore, this study was conducted to determine if leptin is capable of stimulating LH release during this critical time of development and, if so, to determine whether this action is due to an effect at the hypothalamic level. Results showed that leptin, when administered directly into the brain third ventricle (3V), can stimulate (P < 0. 01) LH release in late juvenile animals at doses of 0.01-1.0 microg. A higher dose of 10 microg was ineffective in stimulating LH release. Immunoneutralization of luteinizing hormone-releasing hormone (LHRH) via 3V administration of LHRH antiserum to late juvenile animals indicated a hypothalamic site of action, since the leptin-induced LH release was blocked in the animals that received anti-LHRH, but not in the control animals that received normal rabbit serum. Leptin did not significantly stimulate LH release from animals in first proestrus, estrus, or diestrus. We also report that the serum levels of leptin increase (P < 0.05) during the late juvenile period of development, then decrease (P < 0.05) once the animal enters the peripubertal period. Collectively, our results show that leptin is capable of acting centrally to stimulate LH release, but only during late juvenile development; thus, we suggest the peptide likely plays a facilitatory role on late juvenile LH secretion, but does not drive the LHRH/LH releasing system to first ovulation and hence, sexual maturity.  相似文献   

16.
Melanophore stimulating hormone (MSH) secretion from the vertebratepars intermedia is regulated as for other pituitary hormones,by the hypothalamus. Removal of the pituitary from hypothalamiccontrol results in an autonomous uninhibited secretion of MSH.Thus, as for prolactin, the hypothalamus exerts a tonic inhibitorycontrol over MSH secretion. The nature of this inhibitory mechanismis presently being debated with two general models being considered.It is suggested by some investigators that peptides of neurohypophysialhormone origin act as MSH releasing and inhibiting factors (MRF'and MIF's, respectively). In this scheme, the neurohypophysialhormones such as oxytocin would serve as prohormones which byenzymatic cleavage by hypothalamic enzymes would yield MSH releasingand/or inhibiting factors. It is suggested that the terminaltripeptide side chain is an MIF whereas the N-terminal pentapeptidesequence of oxytocin is an MRF. The data supporting this hypothesiscomes from work of a few investigators that espouse this scheme.To our knowledge, the so-called MSH releasing and inhibitingfactors have proven ineffective in the hands of all other investigatorsin regulating MSH release.  相似文献   

17.
The interaction of dopamine with the effects of the opiate agonist peptide D-Ala2-MePhe4-met-enkephalin-O-o1 (DAMME) on anterior pituitary hormone secretion was investigated in normal male subjects. DAMME produced clear elevations in prolactin, growth hormone and thyroid-stimulating hormone, while inhibiting the release of luteinising hormone and cortisol. There was no change in follicle stimulating hormone. The elevations in prolactin and TSH were enhanced by the dopamine antagonist, domperidone, and blocked by an infusion of dopamine. Neither dopamine nor domperidone modulated the changes in growth hormone, luteinising hormone or cortisol. The data are comptible with the association of the release of prolactin and TSH by opiate peptides with decreased hypothalamic dopaminergic activity; changes in the other anterior pituitary hormones seem to involve different mechanisms.  相似文献   

18.
Cholecystokinin-octapeptide (CCK-8)(10?6 to 10?8M) produced a marked increase in growth hormone (GH) release from incubated rat anterior pituitary quarters and from cultured GH3 pituitary tumor cells. Although several CCK-8 analogues also caused GH release, bombesin, secretin and pancreatic polypeptide had no effect on GH secretion in vitro. In the GH3 cell line, CCK-8 (10?7M) reversed the inhibitory effect of somatostatin (10?5M) on GH release. As CCK immunoreactivity has been demonstrated to be present in the hypothalamus, these results suggest that CCK-8 may be a physiologically important growth hormone releasing factor.  相似文献   

19.
Somatostatin/catecholamine as well as growth hormone releasing factor/catecholamine interactions have been characterized in the hypothalamus and the preoptic area using morphometrical and quantitative histofluorimetrical analyses.
  • 1.(1) The morphometrical analysis of adjacent coronal sections of the rat median eminence demonstrated a marked overlap of somatostatin and tyrosine hydroxylase immunoreactive nerve terminals as well as of growth hormone releasing factor and tyrosine hydroxylase immunoreactive nerve terminals in the medial and lateral palisade zones of the rostral and central parts. Furthermore, the studies on codistribution of growth hormone releasing factor and tyrosine hydroxylase immunoreactivity indicate that only a limited proportion of the growth hormone releasing factor and the dopamine nerve terminals may costore dopamine and growth hormone releasing factor respectively in the medial and lateral palisade zones (see Meister et al., 1985).
  • 2.(2) Intravenous injections of somatostatin 1–14 (100 μg/kg, 2 h) into the hypophysectomized male rat produced an increase in dopamine utilization in the medial and lateral palisade zones of the median eminence.
  • 3.(3) Intravenous injections of rat hypothalamic growth hormone releasing factor (80 μg/kg, 2 h) in the hypophysectomized male rat did not change dopamine utilization in the median eminence but increased noradrenaline utilization in the ventral zone of the hypothalamus and produced a depletion of noradrenaline stores in the paraventricular hypothalamic nucleus.
  • 4.(4) Intravenous injections of human pancreatic growth hormone releasing factor 1–44 (80 μg/kg, 2 h) in the hypophysectomized male rat did not change dopamine utilization in the median eminence, but reduced noradrenaline utilization in the subependymal layer and increased noradrenaline utilization in the suprachiasmatic preoptic nucleus.
The combined results of the present and previous studies have led us to put forward the medianosome concept. The medianosome is defined as an integrative unit, which consists of well defined aggregates of transmitter identified nerve terminals interacting with one another in the external layer of the median eminence. Our present data indicate the existence of putative medianosomes consisting predominantly of growth hormone releasing factor nerve terminals costoring dopamine as well as of somatostatin and dopamine nerve terminals, which interact locally to control growth hormone secretion. A complementary control of growth hormone secretion may be exerted by noradrenaline mechanisms in the subependymal layer, in the ventral zone and/or in the suprachiasmatic preoptic nucleus. However, further analyses in view of the differential effects seen with the present doses of rat hypothalamic and human pancreatic growth hormone releasing factor have to be done. The results also indicate the possible existence of growth hormone releasing factor receptors in the median eminence which may participate in the feedback control of the growth hormone releasing factor immunoreactive neurons in the ventral zone of the hypothalamus.  相似文献   

20.
C Kuhn  K Albright  R Francis 《Life sciences》1991,49(19):1427-1434
Corticotropin releasing factor (CRF) both stimulates ACTH secretion from the pituitary and inhibits secretion of growth hormone (GH) in adult rats through actions in the CNS. The purpose of the present study was to evaluate these pituitary and central actions of CRF in neonatal rats, in which the hypothalamo- pituitary adrenal (HPA) axis is relatively hypo-functional. The results of this study show that central or peripheral administration of CRF evokes a marked dose-related rise in serum corticosterone in 6-day old rats. The same doses of CRF stimulate, rather than inhibit GH secretion. These results suggest that CRF has unique central actions early in ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号