首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Cyclin G-associated kinase (GAK), also known as auxilin 2, is a potential regulator of clathrin-mediated membrane trafficking. It possesses a kinase domain at its N-terminus that can phosphorylate the clathrin adaptors AP-1 and AP-2 in vitro. The GAK C-terminus can act as a cochaperaone in vitro for Hsc70, a heat-shock protein required for clathrin uncoating. Here we show that the specificity of GAK is very similar to that of adaptor-associated kinase 1, another mammalian adaptor kinase. We used siRNA to investigate GAK's in vivo function. We discovered that early stages of clathrin-mediated endocytosis (CME) were partially inhibited when GAK expression was knocked down. This defect was specifically caused by GAK knockdown because it could be rescued by expressing a rat GAK gene that could not be silenced by one of the siRNAs. To identify the GAK activity required during CME, we mutated the kinase domain and the J domain of the rat gene. Only GAK with a functional J domain could rescue the defect, suggesting that GAK is important for clathrin uncoating. Furthermore, we demonstrated that GAK plays a role in the clathrin-dependent trafficking from the trans Golgi network.  相似文献   

2.
While clathrin heavy chains from different species are highly conserved in amino acid sequence, clathrin light chains are much more divergent. Thus clathrin light chain may have different functions in different organisms. To investigate clathrin light chain function, we cloned the clathrin light chain, clcA, from Dictyostelium and examined clathrin function in clcA– mutants. Phenotypic deficiencies in development, cytokinesis, and osmoregulation showed that light chain was critical for clathrin function in Dictyostelium . In contrast with budding yeast, we found the light chain did not influence steady-state levels of clathrin, triskelion formation, or contribute to clathrin over-assembly on intracellular membranes. Imaging GFP-CHC in clcA– mutants showed that the heavy chain formed dynamic punctate structures that were remarkably similar to those found in wild-type cells. However, clathrin light chain knockouts showed a decreased association of clathrin with intracellular membranes. Unlike wild-type cells, half of the clathrin in clcA– mutants was cytosolic, suggesting that the absence of light chain compromised the assembly of triskelions onto intracellular membranes. Taken together, these results suggest a role for the Dictyostelium clathrin light chain in regulating the self-assembly of triskelions onto intracellular membranes, and demonstrate a crucial contribution of the light chain to clathrin function in vivo .  相似文献   

3.
The role of cargo proteins in GGA recruitment   总被引:4,自引:0,他引:4  
Coat proteins are recruited onto membranes to form vesicles that transport cargo from one compartment to another, but the extent to which the cargo helps to recruit the coat proteins is still unclear. Here we have examined the role of cargo in the recruitment of Golgi-localized, gamma-ear-containing, ADP ribosylation factor (ARF)-binding proteins (GGAs) onto membranes in HeLa cells. Moderate overexpression of CD8 chimeras with cytoplasmic tails containing DXXLL-sorting signals, which bind to GGAs, increased the localization of all three GGAs to perinuclear membranes, as observed by immunofluorescence. GGA2 was also expressed at approximately twofold higher levels in these cells because it was degraded more slowly. However, this difference only partially accounted for the increase in membrane localization because there was a approximately fivefold increase in GGA2 associated with crude membranes and a approximately 12-fold increase in GGA2 associated with clathrin-coated vesicles (CCVs) in cells expressing CD8-DXXLL chimeras. The effect of cargo proteins on GGA recruitment was reconstituted in vitro using permeabilized control and CD8-DXXLL-expressing cells incubated with cytosol containing recombinant GGA2 constructs. Together, these results demonstrate that cargo proteins contribute to the recruitment of GGAs onto membranes and to the formation of GGA-positive CCVs.  相似文献   

4.
The chaperone Hsc70 drives the clathrin assembly–disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J‐domain containing co‐chaperone, auxilin, associates with a freshly budded clathrin‐coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy‐chain‐binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 Å resolution, the structure of a clathrin coat (in the D6‐barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C‐terminus of the heavy chain, with a stoichiometry of about one per three‐fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J‐domain, splits ATP, it clamps firmly onto its heavy‐chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly.  相似文献   

5.
6.
The GGAs [Golgi-localised, γ-ear containing, ARF (ADP ribosylation factor)-binding proteins] and the AP-1 (adaptor protein-1) complex are both adaptors for clathrin-mediated intracellular trafficking, but their relationship to each other is unclear. We have used two complementary systems, HeLa cells and Drosophila Dmel2 cells, to investigate GGA and AP-1 function. Immunoelectron microscopy of endogenous AP-1 and GGA in Dmel2 cells shows that they are predominantly associated with distinct clathrin-coated structures. Depletion of either GGA or AP-1 by RNAi does not affect the incorporation of the other adaptor into clathrin-coated vesicles (CCVs), and the cargo protein GFP-LERP (green fluorescent protein-lysosomal enzyme receptor protein) is lost from CCVs only when both adaptors are depleted. Similar results were obtained using HeLa cells treated with siRNA to deplete all three GGAs simultaneously. AP-1 was still incorporated into CCVs after GGA depletion and vice versa, and both needed to be depleted for a robust inhibition of receptor-mediated sorting of lysosomal hydrolases. In contrast, downregulation of major histocompatibility complex (MHC) class I by HIV-1 Nef, which requires AP-1, was not affected by a triple GGA knockdown. Thus, our results indicate that the two adaptors can function independently of each other.  相似文献   

7.
We have cloned and characterized members of a novel family of proteins, the GGAs. These proteins contain an NH(2)-terminal VHS domain, one or two coiled-coil domains, and a COOH-terminal domain homologous to the COOH-terminal "ear" domain of gamma-adaptin. However, unlike gamma-adaptin, the GGAs are not associated with clathrin-coated vesicles or with any of the components of the AP-1 complex. GGA1 and GGA2 are also not associated with each other, although they colocalize on perinuclear membranes. Immunogold EM shows that these membranes correspond to trans elements of the Golgi stack and the TGN. GST pulldown experiments indicate that the GGA COOH-terminal domains bind to a subset of the proteins that bind to the gamma-adaptin COOH-terminal domain. In yeast there are two GGA genes. Deleting both of these genes results in missorting of the vacuolar enzyme carboxypeptidase Y, and the cells also have a defective vacuolar morphology phenotype. These results indicate that the function of the GGAs is to facilitate the trafficking of proteins between the TGN and the vacuole, or its mammalian equivalent, the lysosome.  相似文献   

8.
Sorting of major cargo glycoproteins into clathrin-coated vesicles   总被引:3,自引:1,他引:2  
The AP-1 and AP-2 complexes are the most abundant adaptors in clathrin-coated vesicles (CCVs), but clathrin-mediated trafficking can still occur in the absence of any detectable AP-1 or AP-2. To find out whether adaptor abundance reflects cargo abundance, we used lectin pulldowns to identify the major membrane glycoproteins in CCVs from human placenta and rat liver. Both preparations contained three prominent high molecular-weight proteins: the cation-independent mannose 6-phosphate receptor (CIMPR), carboxypeptidase D (CPD) and low-density lipoprotein receptor-related protein 1 (LRP1). To investigate how these proteins are sorted, we constructed and stably transfected CD8 chimeras into HeLa cells. CD8-CIMPR localized mainly to early/tubular endosomes, CD8-CPD to the trans Golgi network and CD8-LRP1 to late/multivesicular endosomes. All three constructs redistributed to the plasma membrane when clathrin was depleted by siRNA. CD8-CIMPR was also strongly affected by AP-2 depletion. CD8-CPD was moderately affected by AP-2 depletion but strongly affected by depleting AP-1 and AP-2 together. CD8-LRP1 was only slightly affected by AP-2 depletion; however, mutating an NPXY motif in the LRP1 tail caused it to become AP-2 dependent. These results indicate that all three proteins have AP-dependent sorting signals, which may help to explain the relative abundance of AP complexes in CCVs. However, the relatively low abundance of cargo proteins in CCV preparations suggests either that some of the APs may be empty or that the preparations may be dominated by empty coats.  相似文献   

9.
Clathrin-coated vesicles (CCV) are necessary for selective transport events, including receptor-mediated endocytosis on the plasma membrane and cargo molecule sorting in the trans-Golgi network (TGN). Components involved in CCV formation include clathrin heavy and light chains and several adaptor proteins that are conserved among plants. Clathrin-dependent endocytosis has been shown to play an integral part in plant endocytosis. However, little information is known about clathrin dynamics in living plant cells. In this study, we have visualized clathrin in Arabidopsis thaliana by tagging clathrin light chain with green fluorescent protein (CLC-GFP). Quantitative evaluations of colocalization demonstrate that the majority of CLC-GFP is localized to the TGN, and a minor population is associated with multivesicular endosomes and the Golgi trans-cisternae. Live imaging further demonstrated the presence of highly dynamic clathrin-positive tubules and vesicles, which appeared to mediate interactions between the TGNs. CLC-GFP is also targeted to cell plates and the plasma membrane. Although CLC-GFP colocalizes with a dynamin isoform at the plasma membrane, these proteins exhibit distinct distributions at newly forming cell plates. This finding indicates independent functions of CLC (clathrin light chains) and dynamin during the formation of cell plates. We have also found that brefeldin A and wortmannin treatment causes distinctly different alterations in the dynamics and distribution of clathrin-coated domains at the plasma membrane. This could account for the different effects of these drugs on plant endocytosis.  相似文献   

10.
Growth factors must be secreted appropriately to co-ordinate cell proliferation, specification and movement during development and to control cell numbers and migrations in adult animals. Previous results showed that the secretion of the Caenorhabditis elegans fibroblast growth factor homologue, EGL-17, from vulval precursor cells in vivo involves the cytoplasmic adaptor protein Ce-DAB-1 and two lipoprotein receptors that bind Ce-DAB-1 and EGL-17. Here, we confirm the Ce-DAB-1 requirement for EGL-17 secretion using mutant animals. In vitro, Ce-DAB-1 binds to clathrin and APT-4, the C. elegans homologue of the alpha-adaptin subunit of adaptor protein 2 (AP2), and weakly to the gamma-appendage domains of APT-1 (AP1gamma-adaptin) and APT-9 (GGA protein). In tissue-culture cells, Ce-DAB-1 localizes to various compartments, including AP2-containing vesicles near the cell surface and perinuclear vesicles that contain AP1. The latter also contain Rab8, but not Rab5 or Rab11, as well as proteins en route from the trans Golgi network (TGN) to the surface. In vivo, EGL-17 secretion was inhibited by depletion of apt-1, apt-9 or ce-rab-8 and partially inhibited by RNAi of ce-rab-5, consistent with an important role for these proteins in the secretion of EGL-17 in vivo. These results suggest that Ce-DAB-1 might co-ordinate the assembly of endocytic or secretory vesicles in vivo and may mediate EGL-17 secretion directly, by recruiting clathrin to lipoprotein receptors at the TGN, or indirectly, by affecting lipoprotein receptor endocytosis and recycling.  相似文献   

11.
Aftiphilin was identified through a database search for proteins containing binding motifs for the gamma-ear domain of clathrin adaptor protein 1 (AP-1). Here, we demonstrate that aftiphilin is expressed predominantly in brain where it is enriched on clathrin-coated vesicles. In addition to eight gamma-ear-binding motifs, aftiphilin contains two WXXF-acidic motifs that mediate binding to the alpha-ear of clathrin adaptor protein 2 (AP-2) and three FXXFXXF/L motifs that mediate binding to the alpha- and beta2-ear. We demonstrate that aftiphilin uses these motifs for interactions with AP-1 and AP-2 and that it immunoprecipitates these APs but not AP-3 or AP-4 from brain extracts. Aftiphilin demonstrates a brefeldin A sensitive localization to the trans-Golgi network in hippocampal neurons where it co-localizes with AP-1. Aftiphilin is also found at synapses where it co-localizes with synaptophysin and AP-2. Our data suggest a role for aftiphilin in clathrin-mediated trafficking in neurons.  相似文献   

12.
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system.  相似文献   

13.
Cargo selection in vesicular transport: the making and breaking of a coat   总被引:7,自引:1,他引:6  
Intracellular traffic is mediated by vesicular/tubular carriers. The carriers are formed by the activity of cytosolic coat proteins that are recruited to their target membranes and deform these membranes into buds and vesicles. Specific interactions between recruited coat subunits and short peptide sequences (transport motifs) on cargo proteins direct the incorporation of cargo into budded vesicles. Here, we focus on cargo selection reactions mediated by COPII and AP-2/clathrin vesicle coat complexes to explore common mechanisms by which coat assembly support localized and selective cargo sorting. Recent findings suggest that multiple, low-affinity interactions are employed in a cooperative manner to support coat assembly and enable cargo recognition. Thus low-binding affinities between coat subunits and transport motifs are transiently transformed into high-avidity, multivalent and selective interactions at vesicle bud sites. The temporal and regulated nature of the interactions provide the key to cargo selection.  相似文献   

14.
The epsin-related adaptor proteins Ent3p and Ent5p participate in budding of clathrin coated vesicles in transport between trans-Golgi network and endosomes in yeast. Transport of the arginine permease Can1p was analyzed, which recycles between plasma membrane and endosomes and can be targeted to the vacuole for degradation. ent3∆ cells accumulate Can1p-GFP in endosomes. Can1p-GFP is transported faster to the vacuole upon induction of degradation in ent5∆ cells than in wild type cells. The C-terminal domain of Ent5p was sufficient to restore recycling of the secretory SNARE GFP-Snc1p between plasma membrane and TGN in ent3∆ ent5∆ cells. The SNARE Tlg2p was identified as interaction partner of the Ent5p ENTH domain by in vitro binding assays and the interaction site on Ent5p was mapped. Tlg2p functions in transport from early endosomes to the trans-Golgi network and in homotypic fusion of these organelles. Tlg2p is partially shifted to denser fractions in sucrose density gradients of organelles from ent5∆ cells while distribution of Kex2p is unaffected demonstrating that Ent5p acts as cargo adaptor for Tlg2p in vivo. Taken together we show that Ent3p and Ent5p have different roles in transport and function as cargo adaptors for distinct SNAREs.  相似文献   

15.
Enthoprotin, a newly identified component of clathrin-coated vesicles, interacts with the trans-Golgi network (TGN) clathrin adapters AP-1 and GGA2. Here we perform a multi-faceted analysis of the site in enthoprotin that is responsible for the binding to the gamma-adaptin ear (gamma-ear) domain of AP-1. Alanine scan mutagenesis and nuclear magnetic resonance (NMR) studies reveal the full extent of the site as well as critical residues for this interaction. NMR studies of the gamma-ear in complex with a synthetic peptide from enthoprotin provide structural details of the binding site for TGN accessory proteins within the gamma-ear.  相似文献   

16.
The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to angiotensin II have been investigated. In fura-2 loaded cells exposure to a maximally effective concentration of angiotensin II (100 nM) caused a rapid, but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+ only the initial brief transient was observed. In cells previously treated with thapsigargin in Ca2+-free medium to deplete the internal Ca2+ stores, angiotensin II caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Reintroduction of external Ca2+ to thapsigargin-treated, store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was not further increased upon exposure to angiotensin II. Analysis of the data suggests that in bovine chromaffin cells angiotensin II causes Ca2+ entry via a pathway(s) activated as a consequence of internal store mobilization, and entry through this pathway(s) forms the majority of the sustained Ca2+ influx evoked by angiotensin II.  相似文献   

17.
18.
Abstract

Pannexins (Panxs) are a three-member family of large pore ion channels permeable to ions and small molecules. Recent elegant work has demonstrated that the Panx1 C-terminus plays an important role in channel trafficking. Panx2, another family member, has a longer and highly dissimilar C-terminus. Interestingly, Panx1 is readily found at the plasma membrane, while Panx2 is mainly present on intracellular membranes. Here we used overlap-extension cloning to create the first chimeric Panx, consisting of Panx2 with the Panx1 C-terminus (Panx2Panx1CT), to determine whether the Panx1 C-terminus influences the trafficking of Panx2. We are the first to observe a high level of co-localization between Panx2 and the endolysosomal enriched mannose-6-phosphate receptor. Interestingly this distinct localization of Panx2 is altered by the presence of the Panx1 C-terminus. These novel observations support previous data indicating the importance of the C-terminus in the control of Panx trafficking, and highlight the complexity of molecular signals involved.  相似文献   

19.
Plasma membrane Ca2+ ATPases (PMCAs) maintain proper intracellular Ca2+ levels by extruding Ca2+ from the cytosol. PMCA genes and splice forms are expressed in tissue-specific patterns in vertebrates, suggesting that these isoforms may regulate specific biological processes. However, knockout mutants die as embryos or undergo cell death; thus, it is unclear whether other cell processes utilize PMCAs or whether these pumps are largely committed to the control of toxic levels of calcium. Here, we analyze the role of the PMCA gene, mca-3, in Caenorhabditis elegans. We report that partial loss-of-function mutations disrupt clathrin-mediated endocytosis in a class of scavenger cells called coelomocytes. Moreover, components of early endocytic machinery are mislocalized in mca-3 mutants, including phosphatidylinositol-4,5-bisphosphate, clathrin and the Eps15 homology (EH) domain protein RME-1. This defect in endocytosis in the coelomocytes can be reversed by lowering calcium. Together, these data support a function for PMCAs in the regulation of endocytosis in the C. elegans coelomocytes. In addition, they suggest that endocytosis can be blocked by high calcium levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号