首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

2.
Mutants of Escherichia coli having reduced levels of exonuclease VII activity have been isolated by a mass screening procedure. Nine mutants, five of which are known to be of independent origin, were obtained and designated xse. The defects in these strains lie at two or more loci. One of these loci, xseA, lies in the interval between purG and purC; it is 93 to 97% co-transducible with guaA. The order of the genes in this region is purG-xseA guaA,B-purC. The available data do not allow xseA to be ordered with respect to guaA,B. Exonuclease VII purified from E. coli KLC3 xseA3 is more heat labile than exonuclease VII purified from the parent, E. coli PA610 xse+. Therefore, xseA is the structural gene for exonuclease VII. Mutants with defects in the xseA gene show increased sensitivity to nalidixic acid and have an abnormally high frequency of recombination (hyper-Rec phenotype) as measured by the procedure of Konrad and Lehlman (1974). The hyper-Rec character of xseA strains is approximately one-half that of the polAex1 mutant defective in the 5' leads to 3' hydrolytic activity of deoxyribonucleic acid polymerase I. The double mutant, polAex1 xseA7, is twice as hyper-Rec as the polAex1 mutant alone. The xseA- strains are slightly more sensitive to ultraviolet irradiation than the parent strain. Bacteriophages T7, fd, and lambdared grow normally in xseA- strains.  相似文献   

3.
Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision.  相似文献   

4.
Strains of Escherichia coli containing reduced levels of exonuclease VII activity due to mutations in the xseB gene have been isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Seven mutants of independent origin deficient in exonuclease VII activity were obtained. Four of these contained defects in xseA, a locus which has been previously identified, and three others contained mutations in a gene distinct from xseA, which we have designated xseB. Genetic mapping studies place the xseB locus between proC and dnaZ. Exonuclease VII purified from KLC835 (xseA+ xseB3) is more heat labile than enzyme purified from the parent strain PA610 (xse+), showing that xseB is a structural gene for exonuclease VII. The isolation of lambda transducing phage carrying xseA is also described.  相似文献   

5.
Viswanathan M  Lanjuin A  Lovett ST 《Genetics》1999,151(3):929-934
There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3' DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3' DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.  相似文献   

6.
    
Summary The ultraviolet (UV) sensitivity ofEscherichia coli mutants deficient in the 5′→3′ exonuclease activity of DNA polymerase I is intermediate between that ofpol + strains and mutants which are deficient in the polymerizing activity of pol I (polA1). LikepolA1 mutants, the 5′-exonuclease deficient mutants exhibit increased UV-induced DNA degradation and increased repair synthesis compared to apol + strain, although the increase is not as great as inpolA1 or in the conditionally lethal mutant BT4113ts deficient inboth polymerase I activities. When dimer excision was measured at UV doses low enough to avoid interference from extensive DNA degradation, all three classes of polymerase I deficient mutants were found to remove dimers efficiently from their DNA. We conclude that enzymes alternative to polymerase I can operate in both the excision and resynthesis steps of excision repair and that substitution for either of the polymerase I functions results in longer patches of repair. A model is proposed detailing the possible events in the alternative pathways.  相似文献   

7.
We have determined the sequence of the gene encoding the large subunit of Escherichia coli exonuclease VII (xseA) and the amino acid sequence of the protein it encodes. The coding region of the xseA gene is 1368 base pairs. The protein encoded by the gene contains 456 amino acids and has a calculated molecular weight of 51,823. The promoter for xseA is close to that for guaB, and these two genes are transcribed in opposite directions: xseA clockwise and guaB counterclockwise on the standard E. coli genetic map. The cloned xseA gene can complement an xseA deletion mutant strain. In an xseA+ genetic background production of large quantities of the xseA gene product appeared to decrease the amount of exonuclease VII activity in cell extracts. In fact, no exonuclease VII activity at all could be detected following induction of strains in which the xseA gene was under lambda pL regulation. These observations suggest that the proper ratio of the large and small exonuclease VII subunits must be maintained in order to produce active enzyme.  相似文献   

8.
Synthesis of deoxyribonucleic acid (DNA) has been measured as a function of ultraviolet (UV) radiation dose in wild-type and seven UV-sensitive strains of Haemophilus influenzae. At the UV doses used, all strains were able to resume DNA synthesis, even those which are unable to excise pyrimidine dimers from their DNA. These excisionless strains showed longer UV-induced delays in DNA synthesis than all but one of the other strains. The longest delay was shown by DB117, a strain which can excise dimers but which is recombination deficient and unable to rejoin X ray-induced single-strand breaks. All strains showed a progressive decrease in sensitivity as they approached the stationary phase.  相似文献   

9.
The ability to remove ultraviolet (UV)-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 UV-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.  相似文献   

10.
Summary Germinated conidia of Neurospora have been monitored for their ability to excise pyrimidine dimers. Dimer concentration was measured in DNA extracted immediately after UV treatment, and it was compared to that of DNA from cells which had a post-UV incubation before extraction. Two methods were used to assay dimer level in DNA: 1) measurement of the number of single-strand breaks (as revealed in alkaline sucrose gradients) produced by a dimer-specific endonuclease; 2) monitoring the ability to compete for binding to dimer-specific antibodies in a radioimmuno assay. Both methods showed efficient excision of dimers by wild-type and by uvs-2, even though an earlier study had reported that uvs-2 was unable to excise dimers.UV-induced mutation shows a dose-rate effect: acute UV yields several times as many mutations as does the same dose of chronic UV. There is a parallel effect on dimer accumulation. The concentration of dimers at the conclusion of the UV treatment shows a strong correlation with the resultant mutation frequency.  相似文献   

11.
The in vivo repair processes of Alteromonas espejiana, the host for bacteriophage PM2, were characterized, and UV- and methyl methanesulfonate (MMS)-sensitive mutants were isolated. Wild-type A. espejiana cells were capable of photoreactivation, excision, recombination, and inducible repair. There was no detectable pyrimidine dimer-DNA N-glycosylase activity, and pyrimidine dimer removal appeared to occur by a pathway analogous to the Escherichia coli Uvr pathway. The UV- and MMS-sensitive mutants of A. espejiana included three groups, each containing at least one mutation involved with excision, recombination, or inducible repair. One group that was UV sensitive but not sensitive to MMS or X rays showed a decreased ability to excise pyrimidine dimers. Mutants in this group were also sensitive to psoralen plus near-UV light and were phenotypically analogous to the E. coli uvr mutants. A second group was UV and MMS sensitive but not sensitive to X rays and appeared to contain mutations in a gene(s) involved in recombination repair. These recombination-deficient mutants differed from the E. coli rec mutants, which are MMS and X-ray sensitive. The third group of A. espejiana mutants was sensitive to UV, MMS, and X rays. These mutants were recombination deficient, lacked inducible repair, and were phenotypically similar to E. coli recA mutants.  相似文献   

12.
Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair.  相似文献   

13.
In Deinococcus radiodurans, the genes uvsC, uvsD, uvsE, and mtcA are all involved in the single-strand incision of UV-irradiated DNA, and mutations in at least two of them were required to produce an incisionless strain. One mutation must be in mtcA and one in uvsC, uvsD, or uvsE. Strains carrying single mutations in any one of the genes can incise DNA to the same extent as the wild-type strain. Neither the presence of EDTA nor the absence of protein synthesis affected the incision step. Strains deficient in DNA incision have greatly reduced DNA degradation after UV irradiation, and upon addition of chloramphenicol to the postirradiation medium, they do not undergo excessive DNA degradation as is seen in the wild-type strain and strains singly mutant in uvsC, uvsD, or uvsE. The strain singly mutant in mtcA also lacked chloramphenicol-enhanced DNA degradation and loss of viability but behaved similarly to the wild-type strain with respect to resumption of DNA synthesis and DNA degradation in the absence of chloramphenicol. It is proposed that two constitutive, cation-independent UV endonucleases are present in D. radiodurans: UV endonuclease alpha (the product of the mtcA gene), which incises in response to pyrimidine dimers, mitomycin C cross-links, bromomethylbenzanthracene adducts, and other alkylation damage, and UV endonuclease beta (the product of the uvsC, uvsD, and uvsE genes), which incises only in response to pyrimidine dimers. Both endonucleases have associated exonuclease activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The rate of removal of pyrimidine dimers from DNA of UV (254 nm)-irradiated (1 J/m2) normal and xeroderma pigmentosum (XP) cells maintained in culture as nondividing populations was determined. Several normal and XP strains from complementation groups A, C and D were studied. The excision rates and survival ability of nondividing cells were examined to determine if an abnormal sensitivity was associated with a decreased rate of dimer excision. The results show that all normal strains studied excise pyrimidine dimers at the same rate, with the rate curve characterized by two components. All 'excision-deficient' XP strains excise dimers at a slower-than-normal rate, with the rate curves also characterized by two components. The rate constants for the first components of all of the XP strains (group A, C and D) are the same, one tenth of the normal rate constant, except for XP8LO (group A). XP8LO has a first-component rate constant similar to that of normal strains and a second component rate constant similar to that of other group A strains (XP12BE, XP25RO). Thus, the slower rate of dimer excision in XP8LO is due to a defect in the mechanism responsible for the second component of the excision-rate curve. In general, an abnormal sensitivity of nondividing cells to UV is associated with a reduced dimer-excision rate. A notable exception to this is the group C strain XP1BE which has an initial repair rate similar to that of group A XP12BE but is considerably more resistant when survival is measured.  相似文献   

15.
A mutant (uvr-1) of Bacillus subtilis that is deficient in excision of ultraviolet (UV)-induced pyrimidine dimers from deoxyribonucleic acid (DNA) shows a marked increase in ability to survive UV irradiation when plated on amino acid-supplemented agar medium compared with its survival ability when plated on nutrient plating medium, the effect is considered to be one of growth-dependent lethality. Irradiated stationary phase uvr-1 cells, incubated in liquid medium lacking amino acids required for growth, recover from this sensitivity to rich medium within 3 to 4 h after irradiation. Recovery is greatly reduced in the absence of glucose oiminated. Exponentially growing cells have a limited ability to recover from sensitivity to rich medium. Growth-dependent lethality can also occur in liquid medium. In nutrient broth the ability of irradiated stationary-phase uvr-1 cells to form colonies on defined agar medium decreases during postirradiation incubation, but treatmeth with chloramphenicol inhibits the loss of colony-forming ability. Recovery from sensitivity to rich media is inhibited by caffeine but not by 6-(p-hydroxyphenylazo)-uracil, and inhibitor of DNA replication. Alkaline sucrose gradient profiles show that conditions allowing recovery also favor maintaining intact DNA strands, whereas DNA strand breakage or degradation is associated with loss of viability. Recovery from sensitivity to rich medium has not been observed in the Ur+ parent or in strains carrying the mutations uvs-42 (another deficiency in dimer excision), recA1, or polA59. A uvr-1 recA1 mutants shows a higher level of recovery than does the recA1 single mutant, but a much lower level than the uvr-1 single mutant. Apparently, both the uvr-1 defect and Rec+ and PoII+ functions are essential for recovery from sensitivity to rich medium. For optimal recovery, growth immediately after irradiation must be delayed. The process requires energy, apparently involves recombination, and probably results in rejoining of DNA strands in which incision but not excision has occurred.  相似文献   

16.
The frequency of ultraviolet (UV)-induced mutations to streptomycin resistance dropped rapidly when starved Escherichia coli strains WP-2 B/r and B/r T- were incubated on phosphate-buffered agar (PBA), but was reduced only slightly in a WP-2 hcr- mutant. During postirradiation, incubation viability remained approximately constant. Cells given an optimal recovery treatment with photo-reactivating light showed no further recovery if subsequently incubated on PBA. At least 70% of the mutations induced to streptomycin resistance by UV could be repaired. The loss of potential streptomycin-resistant mutants was markedly reduced in strain B/r T- when 5 mug of acriflavin or 700 mug of caffeine per ml was added to PBA. The excision of UV-induced thymine-containing dimers from E. coli tb/r T- was investigated. Dimer excision progressed more slowly when the cells were incubated on PBA containing acriflavin or caffeine. There was no congruity between the kinetics of dimer excision and the kinetics of mutant loss. Our results indicate that removal of potential streptomycin-resistant mutants is considerably faster than the excision of pyrimidine dimers.  相似文献   

17.
A technique which allows the measurement of small numbers of pyrimidine dimers in the deoxyribonucleic acid (DNA) of cells of Bacillus subtilis irradiated with ultraviolet light has been used to show that a strain mutant at the uvr-1 locus is able to excise pyrimidine dimers. Excision repair in this strain was slow, but incision may not be rate limiting because single-strand breaks in DNA accumulate under some conditions. Excision repair probably accounted for a liquid-holding recovery previously reported to occur in this strain. Recombinational exchange of pyrimidine dimers into newly replicated DNA was readily detected in uvr-1 cells, but this exchange did not account for more than a minor fraction of the dimers removed from parental DNA. Excision repair in the uvr-1 strain was inhibited by a drug which complexes DNA polymerase III with DNA gaps. This inhibition may be limited to a number of sites equal to the number of DNA polymerase III molecules, and it is inferred that large gaps are produced by excision of dimers. Because the uvr-1 mutation specifically interferes with excision of dimers at incision sites, it is concluded that the uvr-1 gene product may be an exonuclease which is essential for efficient dimer excision.  相似文献   

18.
Bacillus subtilis strains UVSSP-42-1 (hcr42 ssp1) and UVSSP-1-1 (hcr1 ssp1) are ultraviolet (UV) radiation sensitive both as dormant spores and as vegetative cells. These strains are unable to excise cyclobutane-type dimers from the deoxyribonucleic acid (DNA) of irradiated vegetative cells and fail to remove spore photoproduct from the DNA of irradiated spores either by excision (controlled by gene hcr) or by spore repair (controlled by gene ssp1). When irradiated soon after spore germination, these strains excise dimers, but not spore photoproduct, from their DNA. This process, termed germinative excision repair, functions only transiently in the germination phase and is responsible for the high UV resistance of germinated spores and for their temporary capacity to host cell reactivate irradiated phages infecting them. The recA1 mutation confers higher UV sensitivity to the germinated spores, but does not interfere with dimer removal by germinative excision repair.  相似文献   

19.
Py pyrimidine dimers Py correndonucleases I and II from Micrococcus luteus act exclusively on thymine-thymine, cytosine-cytosine, and thymine-cytosine cyclobutyl dimers in DNA, catalyzing incision 5' to the damage and generating 3'-hydroxyl and 5'-phosphoryl termini. Both enzymes initiate excision of pyrimidine dimers in vitro by correxonucleases and DNA polymerase I. The respective incised DNAs, however, differ in their ability to act as substrate for phage T4 polynucleotide ligase or bacterial alkaline phosphatase, suggesting that each endonuclease is specific for a conformationally unique site. The possibility that their respective action generates termini which represent different degrees of single strandedness is suggested by the unequal protection by Escherichia coli binding protein from the hydrolytic action of exonuclease VII.  相似文献   

20.
The mei-9 and mus(2)201 mutants of Drosophila melanogaster were identified as mutagen-sensitive mutants on the basis of larval hypersensitivity to methyl methanesulfonate and characterized as excision repair-deficient on the basis of a greatly reduced capacity to excise thymine dimers from cellular DNA. The high degree of larval cytotoxicity observed with a variety of other chemical and physical agents indicated that these mutants may be unable to excise other important classes of DNA adducts. We have measured the ability of the single mutants and the double mutant combination mei-9;mus(2)201 to perform the resynthesis step in excision repair by means of an autoradiographic analysis of unscheduled DNA synthesis (UDS) induced in a mixed population of primary cells in culture. The 3 strains exhibit no detectable UDS activity in response to applied doses of 1.5-6.0 mM methyl methanesulfonate, 1.0-4.5 mM N-methyl-N-nitrosourea or 10-40 J/m2 254-nm UV light, dose ranges in which control cells exhibit a strong dose-dependent UDS response. The mei-9 and mei-9;mus(2)201 mutants also have no detectable UDS response to X-ray doses of 300-1800 rad, whereas the mus(2)201 mutant exhibits a reduced, but dose-dependent, response over this range. These data correlate well with the degree of larval hypersensitivity of the strains and suggest that mutations at both loci block the excision repair of a wide variety of DNA damage prior to the resynthesis step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号