首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.  相似文献   

2.
Suicide genes for cancer therapy   总被引:8,自引:0,他引:8  
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.  相似文献   

3.
Gene therapy is defined as a technology that aims to modify the genetic component of cells to gain therapeutic benefits. Suicide gene therapy (or gene-directed enzyme prodrug therapy [GDEPT]) is a two-step treatment for cancer (especially, solid tumors). In the first step, a gene for a foreign enzyme is delivered to the tumor by a vector. Following the expression of the foreign enzyme, a prodrug is administered during the second step, which is selectively activated in the tumor. This article discusses the principles and the theoretical background of GDEPT. A special emphasis is put on enzyme/prodrug systems developed for GDEPT, the design of prodrugs and the kinetic of their activation, the types and the mechanisms of bystander effect and its immunological implications. The possible strategies to improve GDEPT are also discussed.  相似文献   

4.
Gene-directed enzyme prodrug therapy (GDEPT) has been investigated as a means of cancer treatment without affecting normal tissues. This system is based on the delivery of a suicide gene, a gene encoding an enzyme which is able to convert its substrate from non-toxic prodrug to cytotoxin. In this experiment, we have developed a targeted suicide gene therapeutic system that is completely contained within tumor-tropic cells and have tested this system for melanoma therapy in a preclinical model. First, we established double stable RAW264.7 monocyte/macrophage-like cells (Mo/Ma) containing a Tet-On? Advanced system for intracellular carboxylesterase (InCE) expression. Second, we loaded a prodrug into the delivery cells, double stable Mo/Ma. Third, we activated the enzyme system to convert the prodrug, irinotecan, to the cytotoxin, SN-38. Our double stable Mo/Ma homed to the lung melanomas after 1?day and successfully delivered the prodrug-activating enzyme/prodrug package to the tumors. We observed that our system significantly reduced tumor weights and numbers as targeted tumor therapy after activation of the InCE. Therefore, we propose that this system may be a useful targeted melanoma therapy system for pulmonary metastatic tumors with minimal side effects, particularly if it is combined with other treatments.  相似文献   

5.
We have previously proposed the horseradish peroxidase (HRP) and the non-toxic plant hormone indole-3-acetic acid (IAA) as a novel system for gene-directed enzyme/prodrug therapy (GDEPT). The cytotoxic potential of HRP/IAA GDEPT and the induction of a bystander effect were demonstrated in vitro under normoxic as well as hypoxic tumour conditions. To date, the chemical agents and the cellular targets involved in HRP/IAA-mediated toxicity have not been identified. In the present work, some of the molecular and morphological features of the cells treated with HRP/IAA gene therapy were analysed. Human T24 bladder carcinoma cells transiently transfected with the HRP cDNA and exposed to the prodrug IAA showed chromatin condensation, formation of apoptotic bodies, DNA fragmentation, and Annexin V binding. Similar effects were observed when the cells were incubated with the apoptotic agent cisplatin. Caspases appeared to be involved as effectors in HRP/IAA-mediated apoptosis, since treatment with a general caspase inhibitor decreased the fraction of cells with micronuclei (MN) by 30%, with fragmented DNA by 50%, and with condensed chromatin by 60%. However, very little degradation of one of the downstream targets of caspase-3, PARP, could be detected, and apoptosis alone did not appear to account for the killing levels measured with a clonogenic assay. The effect of HRP/IAA treatment on cell cycle progression was also investigated, and a rapid cytostatic effect, equally affecting all phases of the division cycle, was observed.  相似文献   

6.
BACKGROUND: AQ4N is metabolised in hypoxic cells by cytochrome P450s (CYPs) to the cytotoxin AQ4. Most solid tumours are known to contain regions of hypoxia whereas levels of CYPs have been found to vary considerably. Enhancement of CYP levels may be obtained using gene-directed enzyme prodrug therapy (GDEPT). We have therefore examined the potential of a CYP2B6-mediated GDEPT strategy to enhance the anti-tumour effect of the combination of AQ4N with radiation or cyclophosphamide (CPA). METHODS: In vitro and in vivo transient transfection of human CYP2B6 +/- CYP reductase (CYPRED) was investigated in RIF-1 mouse tumours. Efficacy in vitro was assessed using the alkaline comet assay (ACA). In vivo, the time to reach 4x the treatment volume (quadrupling time; VQT) was used as the end point. RESULTS: When CYP2B6 was transfected into RIF-1 cells and treated with AQ4N under hypoxic conditions there was a significant increase in DNA damage (measured by the ACA) compared with non-transfected cells. In vivo, a single intra-tumoural injection of a CYP2B6 vector construct significantly enhanced tumour growth delay in combination with AQ4N (100 mg/kg) and 10 Gy X-rays. AQ4N (100 mg/kg) and CPA (100 mg/kg) with CYP2B6 and CYPRED also enhanced tumour growth delay; this effect became significant when the schedule was repeated 14 days later (p = 0.0197). CONCLUSIONS: The results show the efficacy of a CYP2B6-mediated GDEPT strategy for bioreduction of AQ4N; this may offer an additional approach to target radiation- and chemo-resistant hypoxic tumours that should enhance overall tumour control.  相似文献   

7.
Tumor cells are elusive targets for standard anticancer chemotherapy due to their heterogeneity and genetic instability. On the other hand, proliferating host endothelial cells (ECs) are genetically stable and have a low mutational rate. Thus, antiangiogenic therapy directed against tumor's ECs should, in principle, improve the efficacy of antitumor therapy by inducing little or no drug resistance. Here we present a gene-directed enzyme prodrug therapy (GDEPT) strategy for targeting the tumor vasculature, using the Escherichia coli nitroreductase (ntr) gene delivery associated with the treatment with the prodrug CB1954. In a first time we demonstrated the ability of the ntr/CB1954 system to induce an apoptotic-mediated cell death on monolayer cultures of human umbilical vein ECs (HUV-EC-C). Then, when ntr-transfected HUV-EC-C cells (HUV-EC-C/ntr(+)) were associated in a three-dimensional (3-D) multicellular nodule model with untransfected B16-F10 murine melanoma cell line, we observed a CB1954-mediated bystander cell killing effect from endothelial to neighboring melanoma cells. To our knowledge, this is the first report indicating that GDEPT-based antiangiogenic targeting may be an effective approach for cancer treatment relied on the spreading of the bystander effect from endothelial to tumor cells.  相似文献   

8.
The ideal therapy would target cancer cells while sparing normal tissue. However, in most conventional chemotherapies normal cells are damaged together with cancer cells resulting in the unfortunate side effects. The principle underlying enzyme/prodrug therapy is that a prodrug-activating enzyme is delivered or expressed in tumor tissue following which a non-toxic prodrug is administered systemically. Non-invasive imaging modalities can fill an important niche in guiding prodrug administration when the enzyme concentration is detected to be high in the tumor tissue but low in the normal tissue. Therefore, high therapeutic efficacy with minimized toxic effect can be anticipated. This review introduces the latest developments of molecular imaging in enzyme/prodrug cancer therapies. We focus on the application of imaging modalities including magnetic resonance imaging, position emission tomography and optical imaging in monitoring the enzyme delivery/expression, guiding the prodrug administration and evaluating the real-time therapeutic response in vivo.  相似文献   

9.
Chemotherapeutic tumour targeting using clostridial spores   总被引:4,自引:0,他引:4  
Abstract: The toxicity associated with conventional cancer chemotherapy is primarily due to a lack of specificity for tumour cells. In contrast, intravenously injected clostridial spores exhibit a remarkable specificity for tumours. This is because, following their administration, clostridial spores become exclusively localised to, and germinate in, the hypoxic/necrotic tissue of tumours. This unique property could be exploited to deliver therapeutic agents to tumours. In particular, genetic engineering could be used to endow a suitable clostridial host with the capacity to produce an enzyme within the tumour which can metabolise a systematically introduced, non-toxic prodrug into a toxic metabolite. The feasibility of this strategy (clostridial-directed enzyme prodrug therapy, CDEPT) has been demonstrated by cloning the Escherichia coli B gene encoding nitroreductase (an enzyme which converts the prodrug CB1954 to a highly toxic bifunctional alkylating agent) into a clostridial expression vector and introducing the resultant plasmid into Clostridium beijerinckii (formerly C. acetobutylicum ) NCIMB 8052. The gene was efficiently expressed, with recombinant nitroreductase representing 8% of the cell soluble protein. Following the intravenous injection of the recombinant spores into mice, tumour lysates have been shown, by Western blots, to contain the E. coli -derived enzyme.  相似文献   

10.
Gene-Directed Enzyme Prodrug Therapy (GDEPT), commonly known as suicide gene therapy, provides a selective approach to eradicate tumor cells that is currently considered as an alternate approach to conventional therapy for cancers due to its high efficacy. Herein, we have demonstrated functional activity of the cytosine deaminase (CD) and the hybrid cytosine deaminase-uracil phosphoribosyltransferase (CD-UPRT) suicide genes in transfected cell lines. We have monitored retention profiles of various metabolites that were formed during enzymatic conversion of the prodrug 5-flurocytosine (5-FC) using reverse phase HPLC method. Therapeutic effect of suicide genes was established by cell viability and toxicity assay, whereas apoptotic induction was confirmed by DNA fragmentation ELISA. Our results demonstrated that 5-FC/CD-UPRT-mediated apoptotic cell death was more than 5-FC/CD, which could be further potentiated with anticancer compound curcumin. Such results corroborated 5-FC/CD-UPRT in combination with curcumin as a better chemosensitization method.  相似文献   

11.
Antibodies are highly specific recognition molecules which are increasingly being applied to target therapy in patients. One type of developmental antibody-based therapy is antibody directed enzyme prodrug therapy (ADEPT) for the treatment of cancer. In ADEPT, an antibody specific to a tumor marker protein delivers a drug-activating enzyme to the cancer. Subsequent intravenous administration of an inactive prodrug results in drug activation and cytotoxicity only within the locale of the tumor. Pilot clinical trials with chemical conjugates of the prodrug activating enzyme carboxypeptidase G2 (CPG2) chemically conjugated with an antibody to and carcinoembryonic antigen (CEA), have shown that CPG2-mediated ADEPT is effective but limited by formation of human antibodies to CPG2 (HACA). We have developed a recombinant fusion protein (termed MFE-CP) of CPG2 with an anti-CEA single chain Fv antibody fragment and we have developed methods to address the immunogenicity of this therapeutic. A HACA-reactive discontinuous epitope on MFE-CP was identified using the crystal structure of CPG2, filamentous phage technology and surface enhanced laser desorption/ionization affinity mass spectrometry. This information was used to create a functional mutant of MFE-CP with a significant reduction (range 19.2 to 62.5%, median 38.5%) in reactivity with the sera of 11 patients with post-therapy HACA. The techniques described here are valuable tools for identifying and adapting undesirable immunogenic sites on protein therapeutics.  相似文献   

12.
Three N10-(4-nitrobenzyl)carbamate-protected PBD prodrugs (9a, 9b and 15) have been synthesized and evaluated for potential use in nitroreductase-based ADEPT and GDEPT therapies. An approximately 100-fold activation was observed for the DC-81 prodrug 9a.  相似文献   

13.
Gene-directed enzyme prodrug therapy (GDEPT) is a strategy developed to selectively target cancer cells. However, the clinical benefit is limited due to its poor gene transfer efficiency. To overcome this obstacle, we took advantage of piggyBac (PB) transposon, a natural non-viral gene vector that can induce stable chromosomal integration and persistent gene expression in vertebrate cells, including human cells. To determine whether the vector can also mediate stable gene expression in ovarian cancer cells, we constructed a PB transposon system that simultaneously expresses the Herpes simplex virus thymidine kinase (HSV-tk) gene and the monomeric red fluorescent protein (mRFP1) reporter gene. The recombinant plasmid, pPB/TK, was transfected into ovarian adenocarcinoma cells SKOV3 with FuGENE HD reagent, and the efficiency was given by the percentage of mRFP1-positive cells detected by flow cytometry and confocal microscopy. The specific expression of HSV-tk in transfected cells was confirmed by RT-PCR and western blotting. The sensitivity of transfected cells to pro-drug ganciclovir (GCV) was determined by methylthiazoletetrazolium (MTT) assay. A total of 56.4 ± 8.4% cells transfected with pPB/TK were mRFP1 positive, compared to no measurable mRFP1 expression in pORF-HSVtk-transfected cells. The expression level of HSV-tk in pPB/TK-transfected cells was ∼10 times higher than in pORF-HSVtk-transfected cells. The results show that pPB/TK transfection increases the sensitivity of cells to GCV in a dose-dependent manner. Our data indicate that the PB transposon system could enhance the anti-tumor efficiency of GDEPT in ovarian cancer.  相似文献   

14.
The role of therapeutic antibodies in drug discovery   总被引:10,自引:0,他引:10  
The last 5 years have seen a major upturn in the fortune of therapeutic monoclonal antibodies (mAbs), with nine mAbs approved for clinical use during this period and more than 70 now in clinical trials beyond phase II. Sales are expected to reach $4 billion per annum worldwide in 2002 and $15 billion by 2010. This success can be related to the engineering of mouse mAbs into mouse/human chimaeric antibodies or humanized antibodies, which have had a major effect on immunogenicity, effector function and half-life. The issue of repeated antibody dosing at high levels with limited toxicity was essential for successful clinical applications. Emerging technologies (phage display, human antibody-engineered mice) have created a vast range of novel, antibody-based therapeutics, which specifically target clinical biomarkers of disease. Modified recombinant antibodies have been designed to be more cytotoxic (toxin delivery), to enhance effector functions (bivalent mAbs) and to be fused with enzymes for prodrug therapy and cancer treatment. Antibody fragments have also been engineered to retain specificity and have increased the penetrability of solid tumours (single-chain variable fragments). Radiolabelling of antibodies has now been shown to be effective for cancer imaging and targeting. This article focuses on developments in the design and clinical use of recombinant antibodies for cancer therapy.  相似文献   

15.

Background

Gene-directed enzyme prodrug therapy (GDEPT) is a two-step treatment protocol for solid tumors that involves the transfer of a gene encoding a prodrug-activating enzyme followed by administration of the inactive prodrug that is subsequently activated by the enzyme to its tumor toxic form. However, the establishment of such novel treatment regimes to combat pancreatic cancer requires defined and robust animal model systems.

Methods

Here, we comprehensively compared six human pancreatic cancer cell lines (PaCa-44, PANC-1, MIA PaCa-2, Hs-766T, Capan-2, and BxPc-3) in subcutaneous and orthotopical mouse models as well as in their susceptibility to different GDEPTs.

Results

Tumor uptake was 83% to 100% in the subcutaneous model and 60% to 100% in the orthotopical mouse model, except for Hs-766T cells, which did not grow orthotopically. Pathohistological analyses of the orthotopical models revealed an infiltrative growth of almost all tumors into the pancreas; however, the different cell lines gave rise to tumors with different morphological characteristics. All of the resultant tumors were positive for MUC-1 staining indicating their origin from glandular or ductal epithelium, but revealed scattered pan-cytokeratin staining. Transfer of the cytochrome P450 and cytosine deaminase suicide gene, respectively, into the pancreatic cancer cell lines using retroviral vector technology revealed high level infectibility of these cell lines and allowed the analysis of the sensitivity of these cells to the chemotherapeutic drugs ifosfamide and 5-fluorocytosine, respectively.

Conclusion

These data qualify the cell lines as part of valuable in vitro and in vivo models for the use in defined preclinical studies for pancreas tumor therapy.  相似文献   

16.
Among the broad array of genes that have been evaluated for tumor therapy, those encoding prodrug activation enzymes are especially appealing as they directly complement ongoing clinical chemotherapeutic regimes. These enzymes can activate prodrugs that have low inherent toxicity using both bacterial and yeast enzymes, or enhance prodrug activation by mammalian enzymes. The general advantage of the former is the large therapeutic index that can be achieved, and of the latter, the non-immunogenicity (supporting longer periods of prodrug activation) and the fact that the prodrugs will continue to have some efficacy after transgene expression is extinguished. This review article describes 13 different prodrug activation schemes developed over the last 15 years, two of which - activation of ganciclovir by viral thymidine kinase and activation of 5-fluorocytosine to 5-fluorouracil - are currently being evaluated in clinical trials. Essentially all of these prodrug activation enzymes mediate toxicity through disruption of DNA replication, which occurs at differentially high rates in tumor cells compared with most normal cells. In cancer gene therapy, vectors target delivery of therapeutic genes to tumor cells, in contrast to the use of antibodies in antibody-directed prodrug therapy. Vector targeting is usually effected by direct injection into the tumor mass or surrounding tissues, but the efficiency of gene delivery is usually low. Thus it is important that the activated drug is able to act on non-transduced tumor cells. This bystander effect may require cell-to-cell contact or be mediated by facilitated diffusion or extracellular activation to target neighboring tumor cells. Effects at distant sites are believed to be mediated by the immune system, which can be mobilized to recognize tumor antigens by prodrug-activated gene therapy. Prodrug activation schemes can be combined with each other and with other treatments, such as radiation, in a synergistic manner. Use of prodrug wafers for intratumoral drug activation and selective permeabilization of the tumor vasculature to prodrugs and vectors should further increase the value of this new therapeutic modality.  相似文献   

17.
Recent studies have suggested that carcinoembryonic antigen (CEA)-promoter sequences are active only in CEA-positive cells, filing in the criteria for tumor specific targeting of suicide genes. However, the present study on gene therapy of colon cancer and cell-specificity of CEA promoter, provide evidence that CEA-positive and CEA-negative cells transfected with E. coli cytosine deaminase (CD) gene under the control of CEA promotor sequence are sensitive to enzyme/pro-drug therapy with 5-fluorocytosine (5-FC). Individual clones derived from the CEA-negative cell lines: melanoma Hs294T and glioblastoma T98G after transfection with CD differed profoundly in their sensitivity to 5-FC. The IC50 values for several clones of the CEA-negative cells were almost the same as for CEA-positive colon cancer cells. Such 5-FC-sensitive clones derived from the population of CEA-negative cells, present even in small number, because of the very effective bystender effect of this enzyme/pro-drug system can cause severe problems during therapy by efficiently killing surrounding normal cells. Safety is the major issue in gene therapy. Our data suggest that the safety of gene-directed enzyme pro-drug therapy (GDEPT) with CEA promoter driven expression of therapeutic genes is not so obvious as it has originally been claimed.  相似文献   

18.
Varner JD 《Systems biology》2005,152(4):291-302
Antibody-directed enzyme prodrug therapy (ADEPT) can generate highly localised concentrations of cytotoxic agents directly in a tumour, thereby reducing the collateral toxicity associated with normal tissue exposure. ADEPT is a two-component approach. First, a non-toxic antibody-enzyme fusion protein is localised in the tumour matrix by binding a specific antigen expressed only on the surface of a cancer cell. Once the fusion protein is bound, an inert small molecule prodrug is administered which is the substrate for the enzyme bound to the tumour surface. When the prodrug comes into contact with the bound enzyme, an active cytotoxic agent is generated. A multiple length-scale model of ADEPT therapy in solid tumours is presented. A four-compartment pharmacokinetic (PK) model is formulated where the tumour is comprised of interstitial and cell-surface subcompartments. The macroscopic PK model which describes the biodistribution of antibody-enzyme conjugate, prodrug and active drug at the largest length scale is coupled to a reaction-diffusion tumour model. The models are qualitatively validated against current literature and experimental understanding. The relationship between tumour localisation and the affinity of the antibody-enzyme conjugate for its surface antigen is explored by simulation. The influence of pharmacokinetic and biophysical parameters such as renal elimination rate and permeability of the tumour vasculature upon tumour uptake and retention of the fusion protein are also explored. Lastly, a technique for establishing an optimal prodrug dosing schedule is formulated and initial simulation results are presented.  相似文献   

19.
Mesenchymal stromal cells (MSCs) are being employed in clinical trials to facilitate engraftment and to treat steroid-resistant acute graft-versus-host disease after hematopoietic stem cell transplantation, as well as to repair tissue damage in inflammatory/degenerative disorders, in particular, in inflammatory bowel diseases (IBDs). When entering the clinical arena, a few potential risks of MSC therapy have to be taken into account: (i) immunogenicity of the cells, (ii) biosafety of medium components, (iii) risk of ectopic tissue formation, and (iv) potential in vitro transformation of the cells during expansion. This paper analyzes the main risks connected with the use of MSCs in cellular therapy approaches, and reports on some of the most intriguing findings on the use of MSCs in the context of regenerative medicine. Experimental studies in animal models and phase I/II clinical trials on the use of MSCs for the treatment of IBDs and other inflammatory/degenerative conditions are reviewed.  相似文献   

20.
Lysosomal storage disorders are collectively important because they cause significant morbidity and mortality. Patients can present with severe symptoms that include somatic tissue and bone pathology, developmental delay and neurological impairment. Enzyme-replacement therapy has been developed as a treatment strategy for patients with a lysosomal storage disorder, and for many of these disorders this treatment is either in clinical trial or clinical practice. One major complication arising from enzyme infusion into patients with a lysosomal storage disorder is an immune response to the replacement protein. From clinical trials, it is clear that there is considerable variability in the level of immune response to enzyme-replacement therapy, dependent upon the replacement protein being infused and the individual patient. Hypersensitivity reactions, neutralizing antibodies to the replacement protein and altered enzyme targeting or turnover are potential concerns for patients exhibiting an immune response to enzyme-replacement therapy. The relative occurrence and significance of these issues have been appraised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号