首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K.B. Seamon  J.W. Daly 《Life sciences》1982,30(17):1457-1464
Calcium stimulates adenylate cyclase activity in rat cerebral cortical membranes with either ATP or AppNHp as substrate. In contrast, isoproterenol stimulates the cerebral cortical enzyme with ATP as substrate but not with AppNHp as substrate unless exogenous GTP is added. In rat striatal membranes, calcium or dopamine stimulate adenylate cyclase activity with ATP as substrate, but not with AppNHp as substrate. GTP restores the dopamine but not the calcium response. The inhibitory guanine nucleotide GDP-βS antagonizes dopamine and GppNHp stimulation of the brain adenylate cyclases, but not stimulation by calcium of either rat cerebral cortical or striatal enzymes. Results indicate that GTP is not requisite to calcium-calmodulin activation of adenylate cyclases in brain membranes. In addition, calcium-calmodulin cannot activate striatal adenylate cyclases with a nonphosphorylating nucleotide, AppNHp, as substrate.  相似文献   

2.
Termination of dopamine neurotransmission is primarily controlled by the plasma membrane-localized dopamine transporter. In this study, we investigated how this transporter is regulated by tyrosine kinases in neuronal preparations. In rat dorsal striatal synaptosomes, inhibition of tyrosine kinases by genistein or tyrphostin 23 resulted in a rapid (5-15 min), concentration-dependent decrease in [(3)H]dopamine uptake because of a reduction in maximal [(3)H]dopamine uptake velocity and dopamine transporter cell surface expression. The reduced transporter activity was associated with a decrease in phosphorylated p44/p42 mitogen-activated protein kinases. In primary rat mesencephalic neuronal cultures, the tyrosine kinase inhibitors similarly reduced [(3)H]dopamine uptake. When cultures were serum-deprived, acute activation of tyrosine kinase-coupled TrkB receptors by 100 ng/mL brain-derived neurotrophic factor significantly increased [(3)H]dopamine uptake; the effects were complex with increased maximal velocity but reduced affinity. The facilitatory effect of brain-derived neurotrophic factor on dopamine transporter activity depended on both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Taken together, our results suggest that striatal dopamine transporter function and cell surface expression is constitutively up-regulated by tyrosine kinase activation and that brain-derived neurotrophic factor can mediate this type of rapid regulation.  相似文献   

3.
Relationship of calmodulin and dopaminergic activity in the striatum   总被引:3,自引:0,他引:3  
Increasing evidence suggests a relationship between dopaminergic activity in the striatum and the content of calmodulin (CaM), an endogenous Ca2+-binding protein. The content of CaM in striatal membranes is increased by treatments that produce supersensitivity in striatal membranes is increased by treatments that produce supersensitivity of striatal dopaminergic receptors such as chronic neuroleptic treatment or injection of 6-hydroxydopamine. Concomitant with the increase in CaM is a greater sensitivity of adenylate cyclase to dopamine and an increase in Ca2+-sensitive phosphorylation in the striatal membranes. Procedures that result in dopaminergic subsensitivity, such as amphetamine treatment, increase the cytosolic content of CaM that can subsequently activate Ca2+ and CaM-dependent phosphodiesterase activity. In vitro studies have demonstrated that CaM and Ca2+ can stimulate basal adenylate cyclase activity in a striatal particulate fraction as well as increase the sensitivity of the enzyme to dopamine. Ca2+ and CaM most likely affect the dopamine-sensitive adenylate cyclase by interacting with guanyl nucleotides, which are required for dopamine sensitivity. It is concluded that a change in CaM concentration and/or location occurs during conditions of altered dopaminergic sensitivity in the striatum. These changes in CaM coupled with potential alterations in the Ca2+ concentration could modulate the sensitivity of the dopamine system and many CaM-dependent enzymes.  相似文献   

4.
These studies were undertaken to test the hypothesis that alterations in phosphatidylinositol metabolism can modulate neurotransmitter release in the central nervous system. The effects of 1,2-diacylglycerols (DAGs) on dopamine release in the rat central nervous system were determined by measuring dopamine release from rat striatal synaptosomes in response to two DAGs (sn-1,2-dioctanoylglycerol and 1-oleoyl-2-acetylglycerol) that can activate protein kinase C and one DAG (deoxydioctanoylglycerol) that does not activate this kinase. Dioctanoylglycerol and 1-oleoyl-2-acetylglycerol, at a concentration of 50 micrograms/ml, stimulated the release of labeled dopamine from striatal synaptosomes by 35-50 and 17%, respectively. Dioctanoylglycerol-induced release was also demonstrated for endogenous dopamine. In contrast, deoxydioctanoylglycerol (50 micrograms/ml) did not stimulate dopamine release. Dioctanoylglycerol-induced dopamine release was independent of external calcium concentration, indicating a utilization of internal calcium stores. Dioctanoylglycerol (50 micrograms/ml) also produced a 38% increase in labeled serotonin release from striatal synaptosomes. The addition of dioctanoylglycerol to the striatal supernatant fraction increased protein kinase C activity. These results are consistent with the concept that an increase in phosphatidylinositol metabolism can stimulate neurotransmitter release in the central nervous system via an increase in DAG concentration. The data suggest an involvement of protein kinase C in the DAG-induced release, but other sites for DAG action are also possible.  相似文献   

5.
Dopamine in the concentration 0.4 μg/mL abolishes protein synthesis rhythm in HaCaT keratinocytes and hepatocytes unlike noradrenaline or melatonin, which synchronize direct intercellular interactions and organize protein synthesis rhythm. Experiments with D2 dopamine receptors blocking agent metoclopramide (tserukal) in the concentration 2 μg/mL show that a disorganizing effect of dopamine is driven by the activation of D2 receptors, which block adenylyl cyclase and the efflux of calcium ions from internal depos according to the literature. It is shown that tserukal does not activate serotonin receptors in our experimental settings. Cellular interactions’ recovery during or after dopamine action is carried out by melatonin in the concentration 0.001 μg/mL. A recommendation to inject melatonin before dopamine administration for different medical indications is discussed.  相似文献   

6.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   

7.
We have investigated the properties of dopamine-dependent adenylate cyclase in rat striatal homogenates, 20 h after reserpine treatment. In this experimental condition, we have found that the affinity of the enzyme for dopamine is greatly enhanced. On the other hand, the concentration of apomorphine required to produced half-maximal activation of the enzyme in striatal homogenates of controls and reserpine-treated rats is not changed. The unchanged affinity of adenylate cyclase for the substrate (ATP:Mg++) indicates that reserpine probably affects the receptor component of the enzyme.  相似文献   

8.
Abstract: We examined the effects of cyclic AMP on dopamine receptor-coupled activation of phosphoinositide hydrolysis in rat striatal slices. Forskolin, dibutyryl cyclic AMP, and the protein kinase A activator Sp -cyclic adenosine monophosphothioate ( Sp -cAMPS) significantly inhibited inositol phosphate formation stimulated by the dopamine D1 receptor agonist SKF 38393. Conversely, the protein kinase A antagonist Rp -cyclic adenosine monophosphothioate ( Rp -cAMPS) dose-dependently potentiated the SKF 38393 effect. In the presence of 200 µ M Rp -cAMPS, the dose-response curves of the dopamine D1 receptor agonists SKF 38393 and fenoldopam were shifted to the left and maximal agonist responses were markedly increased. The agonist EC50 values, however, were not significantly altered by protein kinase A inhibition. Neither Sp -cAMPS nor Rp -cAMPS significantly affected basal inositol phosphate accumulation. These findings demonstrate that dopaminergic stimulation of phosphoinositide hydrolysis is inhibited by elevations in intracellular cyclic AMP. Dopamine receptor agonists that stimulate adenylyl cyclase could suppress their activation of phosphoinositide hydrolysis by concomitantly stimulating the formation of cyclic AMP in striatal tissue. The interaction between dopamine D1 receptor-stimulated elevations in cyclic AMP and dopaminergic stimulation of inositol phosphate formation suggests a cellular colocalization of these dopamine-coupled transduction pathways in at least some cells of the rat striatum.  相似文献   

9.
Treatment of striatal washed particles with phospholipase A(2) or C abolished the activation of adenylate cyclase by dopamine but not by N(16)-phenylisopropyl adenosine (PIA). The inhibition of dopamine-sensitive cyclase was dependent on Ca2+ and increased with time and phospholipase concentration. F(-)-sensitive cyclase was not affected by phospholipase A(2) treatment, but was enhanced by phospholipase C treatment. Phospholipase D did not affect basal, PIA, dopamine, or F(-)-sensitive cyclase activities. The observed effects of phospholipase A(2) were not due to either the detergent effect of lysophospholipids or to contaminating proteases. Dopamine-sensitive cyclase, inactivated by pretreatment with phospholipase A(2), was restored by asolectin (a soybean mixed phospholipid), phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine, but not by phosphatidylinositol. Phosphatidylserine and phosphatidylcholine were equipotent in restoring dopamine-sensitive activity. Lubrol-PX, a nonionic detergent, abolished completely the dopamine-sensitive cyclase activity, whereas PIA-sensitive activity was slightly inhibited. In contrast, digitonin inhibited dopamine- and PIA-sensitive cyclase activity in a parallel fashion. Lubrol-PX released some adenylate cyclase into a 16,000 x g supernatant fraction that was stimulated by PIA but not by dopamine. Removal of most of the free detergent by Bio-bead SM 2 enhanced stimulation by PIA but did not restore sensitive cyclase. The data suggest that the requirement for phospholipids for the coupling of dopamine and adenosine receptors to the striatal adenylate cyclase may be different and that the adenosine receptors may be more tightly coupled to the enzyme than are dopamine receptors.  相似文献   

10.
Effects of morphine administration were studied on cyclic AMP metabolism in several regions of rat brain. In the cortex, cerebellum and thalamus-hypothalamus, morphine dependence did not alter the activity of either adenylate cyclase or phosphodiesterase. However, during withdrawal from the opiate treatment, adenylate cyclase activity declined in all three regions studied. In contrast, the striatal cyclic AMP metabolism was enhanced during morphine treatment as reflected by elevated endogenous cyclic AMP and increased adenylate cyclase. Furthermore, narcotic dependence produced significant increases in acetylcholinesterase activity of rat striatum. Whereas morphine withdrawal reversed the changes in striatal acetylcholine levels and acetylcholinesterase activity, the enhanced striatal dopamine remained unaltered. Although the activity of striatal adenylate cyclase was significantly reduced when compared to the morphine-dependent rats, the drop in cyclic AMP levels was not significant. Methadone replacement did not affect the changes in striatal dopamine seen in morphine-withdrawn rats. Whereas dopamine stimulated equally well the striatal adenylate cyclase from control or morphine-dependent animals, it failed to stimulate the striatal enzyme from rats undergoing withdrawal. The crude synaptosomal fraction of the whole brain from morphine-dependent rats exhibited an increase in cyclic AMP which was accompanied by elevated adenylate cyclase and protein kinase activity. Naloxone administration suppressed this rise in cyclic AMP and reversed the morphine-stimulated increases in the activities of adenylate cyclase and protein kinase. Following the withdrawal of morphine treatment, alterations in cyclic AMP metabolism were similar to those noted in morphine-naloxone group. Furthermore, substitution of morphine with methadone antagonized the observed alterations in cyclic nucleotide metabolism during withdrawal.  相似文献   

11.
Abstract: Many Gs-linked receptors have been reported to use multiple signalling pathways in transfected cells but few in their normal cell environment. We show that the adenosine A2a receptor uses two signalling pathways to increase the release of acetylcholine from striatal nerve terminals. One pathway involves activation of Gs, adenylyl cyclase, protein kinase A, and P-type calcium channels; the other is mediated by a cholera toxin-insensitive G protein, protein kinase C, and N-type calcium channels. The effects of these two pathways are not additive, the second pathway being inhibited by the first; but they are equally sensitive to the A2a receptor antagonist KF17837. This demonstrates that the A2a receptor activates two signalling systems in striatal cholinergic neurons.  相似文献   

12.
Dopamine receptor signaling   总被引:13,自引:0,他引:13  
  相似文献   

13.
Dopamine-sensitive adenylate cyclase and 3H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and/or dendrites of dopaminergic neurons; striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers.  相似文献   

14.
H G Lambrecht  K W Koch 《FEBS letters》1991,294(3):207-209
Recoverin, a new calcium binding protein from bovine rod photoreceptor cells, activates guanylyl cyclase below a free calcium concentration of 200 nM. We show here that recoverin is phosphorylated by an endogenous kinase and Mg-ATP at the same decreased calcium concentration. The calcium-dependent activation of guanylyl cyclase is enhanced in the presence of ATP. We suggest that phosphorylation of recoverin reinforces the stimulation of guanylyl cyclase at decreased calcium concentrations.  相似文献   

15.
Abstract: Nitric oxide (NO), liberated from the photoactive donor Roussin's black salt (RBS), was investigated for its ability to release tritium from [3H]dopamine-loaded rat striatal slices. Our results show that illumination of RBS-pretreated striatal slices caused an increase in basal dopamine release, which was reduced by ∼73% in the presence of oxyhaemoglobin (10 µ M ), indicating that it was mediated by liberation of NO. The release was insensitive to removal of extracellular calcium yet was not due to gross cellular damage of the tissue, as there was no detectable increase in lactate dehydrogenase release. Chelation of intracellular calcium with 1,2-bis( o -aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM; 10 µ M ) had no effect on the dopamine release stimulated by illumination of RBS-pretreated slices. The concentration of BAPTA-AM was adequate to chelate intracellular calcium because it inhibited release evoked by the calcium ionophore ionomycin (10 µ M ). Superfusion with zaprinast (10 µ M ) had no effect on RBS-induced dopamine release, suggesting that a mechanism independent of cyclic GMP is involved. This study indicates that NO has a stimulatory effect on striatal dopamine release in vitro that is independent of calcium.  相似文献   

16.
The dopamine receptor adenylate cyclase complex of a rat striatal membrane preparation became more responsive to dopamine following the injection of 6-hydroxydopamine (6-OHDA) into the median forebrain bundle or following the subcutaneous implantation of morphine pellets. Moreover, the membrane cyclase system was more responsive to activation by GTP, guanyl-5-yl-imidodiphosphate and Mn-ATP. These observations suggest that both 6-OHDA and morphine induce similar biochemical changes in striatum and that the increased responsiveness arises, in part, from modification of the nucleotide regulatory and/or catalytic components of adenylate cyclase.  相似文献   

17.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

18.
19.
The growing body of evidence suggests that intermediate products of alpha-synuclein aggregation cause death of sensitive populations of neurones, particularly dopaminergic neurones, which is a critical event in the development of Parkinson's disease and other synucleinopathies. The role of two other members of the family, beta-synuclein and gamma-synuclein, in neurodegeneration is less understood. We studied the effect of inactivation of gamma-synuclein gene on mouse midbrain dopaminergic neurones. Reduced number of dopaminergic neurones was found in substantia nigra pars compacta (SNpc) but not in ventral tegmental area (VTA) of early post-natal and adult gamma-synuclein null mutant mice. Similar reductions were revealed in alpha-synuclein and double alpha-synuclein/gamma-synuclein null mutant animals. However, in none of these mutants did this lead to significant changes of striatal dopamine or dopamine metabolite levels and motor dysfunction. In all three studied types of null mutants, dopaminergic neurones of SNpc were resistant to methyl-phenyl-tetrahydropyridine (MPTP) toxicity. We propose that both synucleins are important for effective survival of SNpc neurones during critical period of development but, in the absence of these proteins, permanent activation of compensatory mechanisms allow many neurones to survive and become resistant to certain toxic insults.  相似文献   

20.
The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号