首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidants are well recognized for their capacity to reduce the phosphorylation of the mammalian target of rapamycin (mTOR) substrates, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and p70 S6 kinase 1 (S6K1), thereby hindering mRNA translation at the level of initiation. mTOR functions to regulate mRNA translation by forming the signaling complex mTORC1 (mTOR, raptor, GβL). Insulin signaling to mTORC1 is dependent upon phosphorylation of Akt/PKB and the inhibition of the tuberous sclerosis complex (TSC1/2), thereby enhancing the phosphorylation of 4E-BP1 and S6K1. In this study we report the effect of H2O2 on insulin-stimulated mTORC1 activity and assembly using A549 and bovine aortic smooth muscle cells. We show that insulin stimulated the phosphorylation of TSC2 leading to a reduction in raptor–mTOR binding and in the quantity of proline-rich Akt substrate 40 (PRAS40) precipitating with mTOR. Insulin also increased 4E-BP1 coprecipitating with mTOR and the phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1. H2O2, on the other hand, opposed the effects of insulin by increasing raptor–mTOR binding and the ratio of PRAS40/raptor derived from the mTOR immunoprecipitates in both cell types. These effects occurred in conjunction with a reduction in 4E-BP1 phosphorylation and the 4E-BP1/raptor ratio. siRNA-mediated knockdown of PRAS40 in A549 cells partially reversed the effect of H2O2 on 4E-BP1 phosphorylation but not on S6K1. These findings are consistent with PRAS40 functioning as a negative regulator of insulin-stimulated mTORC1 activity during oxidant stress.  相似文献   

2.
BACKGROUND: The mammalian target of rapamycin, mTOR, is a serine/threonine kinase that controls cell growth and proliferation via the translation regulators eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). We recently identified a TOR signaling (TOS) motif in the N terminus of S6K1 and the C terminus of 4E-BP1 and demonstrated that in S6K1, the TOS motif is necessary to facilitate mTOR signaling to phosphorylate and activate S6K1. However, it is unclear how the TOS motif in S6K1 and 4E-BP1 mediates mTOR signaling. RESULTS: Here, we show that a functional TOS motif is required for 4E-BP1 to bind to raptor (a recently identified mTOR-interacting protein), for 4E-BP1 to be efficiently phosphorylated in vitro by the mTOR/raptor complex, and for 4E-BP1 to be phosphorylated in vivo at all identified mTOR-regulated sites. mTOR/raptor-regulated phosphorylation is necessary for 4E-BP's efficient release from the translational initiation factor eIF4E. Consistently, overexpression of a mutant of 4E-BP1 containing a single amino acid change in the TOS motif (F114A) reduces cell size, demonstrating that mTOR-dependent regulation of cell growth by 4E-BP1 is dependent on a functional TOS motif. CONCLUSIONS: Our data demonstrate that the TOS motif functions as a docking site for the mTOR/raptor complex, which is required for multisite phosphorylation of 4E-BP1, eIF4E release from 4E-BP1, and cell growth.  相似文献   

3.
The mammalian target of rapamycin (mTOR) kinase occurs in mTOR complex 1 (mTORC1) and complex 2 (mTORC2), primarily differing by the substrate specificity factors raptor (in mTORC1) and rictor (in mTORC2). Both complexes are activated during human cytomegalovirus (HCMV) infection. mTORC1 phosphorylates eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) and p70S6 kinase (S6K) in uninfected cells, and this activity is lost upon raptor depletion. In infected cells, 4E-BP1 and S6K phosphorylation is maintained when raptor or rictor is depleted, suggesting that either mTOR complex can phosphorylate 4E-BP1 and S6K. Studies using the mTOR inhibitor Torin1 show that phosphorylation of 4E-BP1 and S6K in infected cells depends on mTOR kinase. The total levels of 4E-BP1 and viral proteins representative of all temporal classes were lowered by Torin1 treatment and by raptor, but not rictor, depletion, suggesting that mTORC1 is involved in the production of all classes of HCMV proteins. We also show that Torin1 inhibition of mTOR kinase is rapid and most deleterious at early times of infection. While Torin1 treatment from the beginning of infection significantly inhibited translation of viral proteins, its addition at later time points had far less effect. Thus, with respect to mTOR's role in translational control, HCMV depends on it early in infection but can bypass it at later times of infection. Depletion of 4E-BP1 by use of short hairpin RNAs (shRNAs) did not rescue HCMV growth in Torin1-treated human fibroblasts as it has been shown to in murine cytomegalovirus (MCMV)-infected 4E-BP1(-/-) mouse embryo fibroblasts (MEFs), suggesting that during HCMV infection mTOR kinase has additional roles other than phosphorylating and inactivating 4E-BP1. Overall, our data suggest a dynamic relationship between HCMV and mTOR kinase which changes during the course of infection.  相似文献   

4.
《Cellular signalling》2014,26(10):2117-2121
Mammalian target of rapamycin (mTOR) controls cellular growth and proliferation by virtue of its ability to regulate protein translation. Eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) — a key mTOR substrate, binds and sequesters eIF4E to impede translation initiation that is supposedly overcome upon 4E-BP1 phosphorylation by mTOR. Ambiguity surrounding the precise identity of mTOR regulated sites in 4E-BP1 and their invariable resistance to mTOR inactivation raises concerns about phospho-regulated model proposed for 4E:4E-BP1 interaction. Our attempt to mimic dephosphorylation associated with rapamycin response by introducing phospho deficient mutants for sites implicated in regulating 4E:4E-BP1 interaction individually or globally highlighted no obvious difference in the quantum of their association with CAP bound 4E when compared with their phosphomimicked counterparts or the wild type 4E-BP1. TOS or RAIP motif deletion variants compromised for raptor binding and resultant phosphodeficiency did little to influence their association with CAP bound 4E. Interestingly ectopic expression of ribosomal protein S6 kinase 1 (S6K1) that restored 4E-BP1 sensitivity to rapamycin/Torin reflected by instant loss of 4E-BP1 phosphorylation, failed to bring about any obvious change in 4E:4E-BP1 stoichiometry. Our data clearly demonstrate a potential disconnect between rapamycin response of 4E-BP1 and its association with CAP bound 4E.  相似文献   

5.
6.
The mammalian target of rapamycin (mTOR) controls multiple cellular functions in response to amino acids and growth factors, in part by regulating the phosphorylation of p70 S6 kinase (p70S6k) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Raptor (regulatory associated protein of mTOR) is a recently identified mTOR binding partner that also binds p70S6k and 4E-BP1 and is essential for TOR signaling in vivo. Herein we demonstrate that raptor binds to p70S6k and 4E-BP1 through their respective TOS (conserved TOR signaling) motifs to be required for amino acid- and mTOR-dependent regulation of these mTOR substrates in vivo. A point mutation of the TOS motif also eliminates all in vitro mTOR-catalyzed 4E-BP1 phosphorylation and abolishes the raptor-dependent component of mTOR-catalyzed p70S6k phosphorylation in vitro. Raptor appears to serve as an mTOR scaffold protein, the binding of which to the TOS motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation in vivo and perhaps for conferring their sensitivity to rapamycin and amino acid sufficiency.  相似文献   

7.
mTOR and raptor are components of a signaling pathway that regulates mammalian cell growth in response to nutrients and growth factors. Here, we identify a member of this pathway, a protein named GbetaL that binds to the kinase domain of mTOR and stabilizes the interaction of raptor with mTOR. Like mTOR and raptor, GbetaL participates in nutrient- and growth factor-mediated signaling to S6K1, a downstream effector of mTOR, and in the control of cell size. The binding of GbetaL to mTOR strongly stimulates the kinase activity of mTOR toward S6K1 and 4E-BP1, an effect reversed by the stable interaction of raptor with mTOR. Interestingly, nutrients and rapamycin regulate the association between mTOR and raptor only in complexes that also contain GbetaL. Thus, we propose that the opposing effects on mTOR activity of the GbetaL- and raptor-mediated interactions regulate the mTOR pathway.  相似文献   

8.
Signaling through the mammalian target of rapamycin (mTOR) controls cell size and growth as well as other functions, and it is a potential therapeutic target for graft rejection, certain cancers, and disorders characterized by inappropriate cell or tissue growth. mTOR signaling is positively regulated by hormones or growth factors and amino acids. mTOR signaling regulates the phosphorylation of several proteins, the best characterized being ones that control mRNA translation. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) undergoes phosphorylation at multiple sites. Here we show that amino acids regulate the N-terminal phosphorylation sites in 4E-BP1 through the RAIP motif in a rapamycin-insensitive manner. Several criteria indicate this reflects a rapamycin-insensitive output from mTOR. In contrast, the insulin-stimulated phosphorylation of the C-terminal site Ser64/65 is generally sensitive to rapamycin, as is phosphorylation of another well-characterized target for mTOR signaling, S6K1. Our data imply that it is unlikely that mTOR directly phosphorylates Thr69/70 in 4E-BP1. Although 4E-BP1 and S6K1 bind the mTOR partner, raptor, our data indicate that the outputs from mTOR to 4E-BP1 and S6K1 are distinct. In cells, efficient phosphorylation of 4E-BP1 requires it to be able to bind to eIF4E, whereas phosphorylation of 4E-BP1 by mTOR in vitro shows no such preference. These data have important implications for understanding signaling downstream of mTOR and the development of new strategies to impair mTOR signaling.  相似文献   

9.
The opposing actions of glucagon and insulin on glucose metabolism within the liver are essential mechanisms for maintaining plasma glucose concentrations within narrow limits. Less well studied are the counterregulatory actions of glucagon on protein metabolism. In the present study, the effect of glucagon on amino acid-induced signaling through the mammalian target of rapamycin (mTOR), an important controller of the mRNA binding step in translation initiation, was examined using the perfused rat liver as an experimental model. The results show that amino acids enhance signaling through mTOR resulting in phosphorylation of eukaryotic initiation factor 4E-binding protein (4E-BP)1, the 70-kDa ribosomal protein (rp)S6 kinase, S6K1, and rpS6. In contrast, glucagon repressed both basal and amino acid-induced signaling through mTOR, as assessed by changes in the phosphorylation of 4E-BP1 and S6K1. The repression was associated with the activation of protein kinase A and enhanced phosphorylation of LKB1 and the AMP-activated protein kinase (AMPK). Surprisingly, the phosphorylation of two S6K1 substrates, rpS6 and eukaryotic initiation factor 4B, was not repressed but instead was increased by glucagon treatment, regardless of the amino acid concentration. The latter finding could be explained by the glucagon-induced phosphorylation of the ERK1 and the 90-kDa rpS6 kinase p90(rsk). Thus, glucagon represses phosphorylation of 4E-BP1 and S6K1 through the activation of a protein kinase A-LKB-AMPK-mTOR signaling pathway, while simultaneously enhancing phosphorylation of other downstream effectors of mTOR through the activation of the extracellular signal-regulated protein kinase 1-p90(rsk) signaling pathway. Amino acids also enhance AMPK phosphorylation, although to a lesser extent than glucagon and amino acids combined.  相似文献   

10.
Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.  相似文献   

11.
The rapid growth of neonates is driven by high rates of skeletal muscle protein synthesis. This high rate of protein synthesis, which is induced by feeding, declines with development. Overnight-fasted 7- and 26-day-old pigs either remained fasted or were refed, and the abundance and phosphorylation of growth factor- and nutrient-induced signaling components that regulate mRNA translation initiation were measured in skeletal muscle and liver. In muscle, but not liver, the activation of inhibitors of protein synthesis, phosphatase and tensin homolog deleted on chromosome 10, protein phosphatase 2A, and tuberous sclerosis complex 1/2 increased with age. Serine/threonine phosphorylation of the insulin receptor and insulin receptor substrate-1, which downregulates insulin signaling, and the activation of AMP-activated protein kinase, an inhibitor of protein synthesis, were unaffected by age and feeding in muscle and liver. Activation of positive regulators of protein synthesis, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and eIF4E-binding protein-1 (4E-BP1) decreased with age in muscle but not liver. Feeding enhanced mTOR, S6K1, and 4E-BP1 activation in muscle, and this response decreased with age. In liver, activation of S6K1 and 4E-BP1, but not mTOR, was increased by feeding but was unaffected by age. Raptor abundance and the association between raptor and mTOR were greater in 7- than in 26-day-old pigs. The results suggest that the developmental decline in skeletal muscle protein synthesis is due in part to developmental regulation of the activation of growth factor and nutrient-signaling components.  相似文献   

12.
The proline-rich Akt substrate of 40 kilodaltons (PRAS40) was identified as a raptor-binding protein that is phosphorylated directly by mammalian target of rapamycin (mTOR) complex 1 (mTORC1) but not mTORC2 in vitro, predominantly at PRAS40 (Ser(183)). The binding of S6K1 and 4E-BP1 to raptor requires a TOR signaling (TOS) motif, which contains an essential Phe followed by four alternating acidic and small hydrophobic amino acids. PRAS40 binding to raptor was severely inhibited by mutation of PRAS40 (Phe(129) to Ala). Immediately carboxyl-terminal to Phe(129) are two small hydrophobic amino acid followed by two acidic residues. PRAS40 binding to raptor was also abolished by mutation of the major mTORC1 phosphorylation site, Ser(183), to Asp. PRAS40 (Ser(183)) was phosphorylated in intact cells; this phosphorylation was inhibited by rapamycin, by 2-deoxyglucose, and by overexpression of the tuberous sclerosis complex heterodimer. PRAS40 (Ser(183)) phosphorylation was also inhibited reversibly by withdrawal of all or of only the branched chain amino acids; this inhibition was reversed by overexpression of the Rheb GTPase. Overexpressed PRAS40 suppressed the phosphorylation of S6K1 and 4E-BP1 at their rapamycin-sensitive phosphorylation sites, and reciprocally, overexpression of S6K1 or 4E-BP1 suppressed phosphorylation of PRAS40 (Ser(183)) and its binding to raptor. RNA interference-induced depletion of PRAS40 enhanced the amino acid-stimulated phosphorylation of both S6K1 and 4E-BP1. These results establish PRAS40 as a physiological mTORC1 substrate that contains a variant TOS motif. Moreover, they indicate that the ability of raptor to bind endogenous substrates is limiting for the activity of mTORC1 in vivo and is therefore a potential locus of regulation.  相似文献   

13.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

14.
We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen.  相似文献   

15.
Mammalian target of rapamycin (mTOR) controls initiation of translation through regulation of ribosomal p70S6 kinase (S6K1) and eukaryotic translation initiation factor-4E (eIF4E) binding protein (4E-BP). mTOR is considered to be located predominantly in cytosolic or membrane fractions and may shuttle between the cytoplasm and nucleus. In most previous studies a single cell line, E1A-immortalized human embryonic kidney cells (HEK293), has been used. Here we show that in human malignant cell lines, human fibroblasts, and murine myoblasts mTOR is predominantly nuclear. In contrast, mTOR is largely excluded from the nucleus in HEK293 cells. Hybrids between HEK293 and Rh30 rhabdomyosarcoma cells generated cells co-expressing markers unique to HEK293 (E1A) and Rh30 (MyoD). mTOR distribution was mainly nuclear with detectable levels in the cytoplasm. mTOR isolated from Rh30 nuclei phosphorylated recombinant GST-4E-BP1 (Thr-46) in vitro and thus has kinase activity. We next investigated the cellular distribution of mTOR substrates 4E-BP, S6K1, and eIF4E. 4E-BP was exclusively detected in cytoplasmic fractions in all cell lines. S6K1 was localized in the cytoplasm in colon carcinoma, HEK293 cells, and IMR90 fibroblasts. S6K1 was readily detected in all cellular fractions derived from rhabdomyosarcoma cells. eIF4E was detected in all fractions derived from rhabdomyosarcoma cells but was not detectable in nuclear fractions from colon carcinoma HEK293 or IMR90 cells.  相似文献   

16.
The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.  相似文献   

17.
The translational repressor protein eIF4E-binding protein 1 (4E-BP1, also termed PHAS-I) is regulated by phosphorylation through the rapamycin-sensitive mTOR (mammalian target of rapamycin) pathway. Recent studies have identified two regulatory motifs in 4E-BP1, an mTOR-signaling (TOS) motif in the C terminus of 4E-BP1 and an RAIP motif (named after its sequence) in the N terminus. Other recent work has shown that the protein raptor binds to mTOR and 4E-BP1. We show that raptor binds to full-length 4E-BP1 or a C-terminal fragment containing the TOS motif but not to an N-terminal fragment containing the RAIP motif. Mutation of several residues within the TOS motif abrogates binding to raptor, indicating that the TOS motif is required for this interaction. 4E-BP1 undergoes phosphorylation at multiple sites in intact cells. The effects of removal or mutation of the RAIP and TOS motifs differ. The RAIP motif is absolutely required for phosphorylation of sites in the N and C termini of 4E-BP1, whereas the TOS motif primarily affects phosphorylation of Ser-64/65, Thr-69/70, and also the rapamycin-insensitive site Ser-101. Phosphorylation of N-terminal sites that are dependent upon the RAIP motif is sensitive to rapamycin. The RAIP motif thus promotes the mTOR-dependent phosphorylation of multiple sites in 4E-BP1 independently of the 4E-BP1/raptor interaction.  相似文献   

18.
In mammalian cells, the mammalian target of rapamycin (mTOR) forms an enzyme complex with raptor (together with other proteins) named mTOR complex 1 (mTORC1), of which a major target is the p70 ribosomal protein S6 kinase (p70S6K). A second enzyme complex, mTOR complex 2 (mTORC2), contains mTOR and rictor and regulates the Akt kinase. Both mTORC1 and mTORC2 are regulated by phosphorylation, complex formation and localization. So far, the role of p70S6K-mediated mTOR S2448 phosphorylation has not been investigated in detail. Here, we report that endogenous mTOR phosphorylated at S2448 binds to both, raptor and rictor. Experiments with chemical inhibitors of the mTOR kinase and of the phosphatidylinositol-3-kinase revealed that downregulation of mTOR S2448 phosphorylation correlates with decreased mTORC1 activity but can occur decoupled of effects on mTORC2 activity. In addition, we found that the correlation of the mTOR S2448 phosphorylation status with mTORC1 activity is not a consequence of effects on the assembly of mTOR protein and raptor. Our data allow new insights into the role of mTOR phosphorylation for the regulation of its kinase activity.  相似文献   

19.
BACKGROUND: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. CONCLUSIONS: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.  相似文献   

20.
The importance of branched-chain amino acids as nutrient regulators of protein synthesis in skeletal muscle was recognized more than 20 years ago. Of the branched-chain amino acids, leucine in particular was shown to play a central role in promoting muscle protein synthesis. However, it was only recently that the mechanism(s) involved in the stimulation of protein synthesis by leucine has begun to be defined. Studies performed in our laboratory during the past few years have revealed that oral administration of leucine to fasted rats enhances protein synthesis in association with increased phosphorylation of two proteins downstream of the protein kinase referred to as the mammalian target of rapamycin (mTOR). These proteins, eukaryotic initiation factor eIF4E binding protein (4E-BP)1 and ribosomal protein S6 kinase S6K1, control in part the step in translation initiation involving the binding of mRNA to the 40S ribosomal subunit. In theory the translation of all mRNAs can be regulated through such mechanisms, however, some mRNAs are more sensitive to the changes than others, resulting in modulation of gene expression through altered patterns of translation of specific mRNAs. Moreover, although a basal amount of plasma insulin is required for leucine to enhance signaling downstream of mTOR, the concentration observed in plasma of fasted rats is sufficient to observe maximal changes in phosphorylation of 4E-BP1 and S6K1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号