首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caulobacter crescentus is an obligate aerobe which is exposed to high concentrations of photosynthetic oxygen and low levels of nutrients in its aquatic environment. Physiological studies of oxidative and starvation stresses in C. crescentus were undertaken through a study of lacZ fusion and null mutant strains constructed from the cloned 5' end of katG, encoding a catalase-peroxidase. The katG gene was shown to be solely responsible for catalase and peroxidase activity in C. crescentus. Like the katG of Escherichia coli, C. crescentus katG is induced by hydrogen peroxide and is important in sustaining the exponential growth rate. However, dramatic differences are seen in growth stage induction. E. coli KatE catalase and KatG catalase-peroxidase activities are induced 15- to 20-fold during exponential growth and then approximately halved in the stationary phase. In contrast, C. crescentus KatG activity is constant throughout exponential growth and is induced 50-fold in the stationary phase. Moreover, the survival of a C. crescentus katG null mutant is reduced by more than 3 orders of magnitude after 24 h in stationary phase and more than 6 orders of magnitude after 48 h, a phenotype not seen for E. coli katE and katG null mutants. These results indicate a major role for C. crescentus catalase-peroxidase in stationary-phase survival and raise questions about whether the peroxidatic activity as well as the protective catalatic activity of the dual-function enzyme is important in the response to starvation stress.  相似文献   

2.
3.
DnaA protein binds bacterial replication origins and it initiates chromosome replication. The Caulobacter crescentus DnaA also initiates chromosome replication and the C. crescentus response regulator CtrA represses chromosome replication. CtrA proteolysis by ClpXP helps restrict chromosome replication to the dividing cell type. We report that C. crescentus DnaA protein is also selectively targeted for proteolysis but DnaA proteolysis uses a different mechanism. DnaA protein is unstable during both growth and stationary phases. During growth phase, DnaA proteolysis ensures that primarily newly made DnaA protein is present at the start of each replication period. Upon entry into stationary phase, DnaA protein is completely removed while CtrA protein is retained. Cell cycle arrest by sudden carbon or nitrogen starvation is sufficient to increase DnaA proteolysis, and relieving starvation rapidly stabilizes DnaA protein. This starvation-induced proteolysis completely removes DnaA protein even while DnaA synthesis continues. Apparently, C. crescentus relies on proteolysis to adjust DnaA in response to such rapid nutritional changes. Depleting the C. crescentus ClpP protease significantly stabilizes DnaA. However, a dominant-negative clpX allele that blocks CtrA degradation, even when combined with a clpA null allele, did not decrease DnaA degradation. We suggest that either a novel chaperone presents DnaA to ClpP or that ClpX is used with exceptional efficiency so that when ClpX activity is limiting for CtrA degradation it is not limiting for DnaA degradation. This unexpected and finely tuned proteolysis system may be an important adaptation for a developmental bacterium that is often challenged by nutrient-poor environments.  相似文献   

4.
Caulobacter crescentus accumulated guanosine tetraphosphate in response to nitrogen starvation but not in response to amino acid starvation. Nitrogen starvation also acted specifically to inhibit certain transitions in the C. crescentus life cycle, and guanosine tetraphosphate may act as an intracellular regulator of cell cycle events.  相似文献   

5.
6.
In this paper we have defined proteome signatures of Bacillus subtilis in response to heat, salt, peroxide, and superoxide stress as well as after starvation for ammonium, tryptophan, glucose, and phosphate using the 2-D gel-based approach. In total, 79 stress-induced and 155 starvation-induced marker proteins were identified including 50% that are not expressed in the vegetative proteome. Fused proteome maps and a color coding approach have been used to define stress-specific regulons that are involved in specific adaptative functions (HrcA for heat, PerR and Fur for oxidative stress, RecA for peroxide, CymR and S-box for superoxide stress). In addition, starvation-specific regulons are defined that are involved in the uptake or utilization of alternative nutrient sources (TnrA, sigmaL/BkdR for ammonium; tryptophan-activated RNA-binding attenuation protein for tryptophan; CcpA, CcpN, sigmaL/AcoR for glucose; PhoPR for phosphate starvation). The general stress or starvation proteome signatures include the CtsR, Spx, sigmaL/RocR, sigmaB, sigmaH, CodY, sigmaF, and sigmaE regulons. Among these, the Spx-dependent oxidase NfrA was induced by all stress conditions indicating stress-induced protein damages. Finally, a subset of sigmaH-dependent proteins (sporulation response regulator, YvyD, YtxH, YisK, YuxI, YpiB) and the CodY-dependent aspartyl phosphatase RapA were defined as general starvation proteins that indicate the transition to stationary phase caused by starvation.  相似文献   

7.
Evolution by natural selection occurs in cultures of Escherichia coli maintained under carbon starvation stress. Mutants of increased fitness express a growth advantage in stationary phase (GASP) phenotype, enabling them to grow and displace the parent as the majority population. The first GASP mutation was identified as a loss-of-function allele of rpoS, encoding the stationary-phase global regulator, sigma(S) (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757-1760, 1993). We now report that a second global regulator, Lrp, can also play a role in stationary-phase competition. We found that a mutant that took over an aged culture of an rpoS strain had acquired a GASP mutation in lrp. This GASP allele, lrp-1141, encodes a mutant protein lacking the critical glycine in the turn of the helix-turn-helix DNA-binding domain. The lrp-1141 allele behaves as a null mutation when in single copy and is dominant negative when overexpressed. Hence, the mutant protein appears to retain stability and the ability to dimerize but lacks DNA-binding activity. We also demonstrated that a lrp null allele generated by a transposon insertion has a fitness gain identical to that of the lrp-1141 allele, verifying that cells lacking Lrp activity have a competitive advantage during prolonged starvation. Finally, we tested by genetic analysis the hypothesis that the lrp-1141 GASP mutation confers a fitness gain by enhancing amino acid catabolism during carbon starvation. We found that while amino acid catabolism may play a role, it is not necessary for the lrp GASP phenotype, and hence the lrp GASP phenotype is due to more global physiological changes.  相似文献   

8.
9.
Transposon mutagenesis in Caulobacter crescentus   总被引:31,自引:21,他引:10       下载免费PDF全文
Transposons Tn5 (Km) and Tn7 (Tp and Sm) were transferred to Caulobacter crescentus via P-type antibiotic resistance factors. Transposition was demonstrated by the isolation of chromosomal insertions of each transposon. With C. crescentus strains harboring RP4 aphA::Tn7, the introduction of a wild-type RP4 resulted in the loss of the resident plasmid. Simultaneous selection for Kmr and Smr yielded colonies with chromosomal insertions of Tn7. Examination of over 10,000 chromosomal insertions of Tn7 indicated no auxotrophic or motility mutants. Thus, Tn7 appears to have a high specificity of insertion in C. crescentus. The Mu-containing plasmid pJB4JI transferred Tn5 to C. crescentus, but the plasmid was not maintained. Control experiments showed that recovery of Mu-containing plasmids occurred at very low frequencies in C. crescentus and that the plasmids which were recovered had undergone extensive deletion of plasmid DNA. Presumably, some part of the Mu genome was not tolerated by C. crescentus. The instability of the Mu-containing plasmids makes them excellent vectors for the introduction of transposons, and we have used pJB4JI to isolated chromosomal insertions of Tn5. When several thousand of these insertion mutants were examined, we found auxotrophic and motility mutants at frequencies of 1 and 2%, respectively. These results indicate that Tn5 had a low specificity of insertion in C. crescentus and therefore would be a useful mutagen for obtaining a variety of mutant phenotypes.  相似文献   

10.
We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the alpha-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 10(4)-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.  相似文献   

11.
12.
13.
14.
15.
16.
Genetic mapping with Tn5-derived auxotrophs of Caulobacter crescentus.   总被引:17,自引:13,他引:4       下载免费PDF全文
Chromosomal insertions of Tn5 in Caulobacter crescentus displayed complete stability upon transduction and proved useful in strain building on complex media. RP4-primes constructed in vitro containing C. crescentus genomic sequences in the HindIII site of the kanamycin resistance gene failed to show enhanced or directed chromosome mobilization abilities. One of these kanamycin-sensitive RP4 derivatives, pVS1, was used as a mobilization vector in conjugation experiments on complex media where chromosomal Tn5 transfer to the recipient was selected. pVS1-mediated transfer of Tn5-induced auxotrophic mutations occurred at frequencies of 10(-6) to 10(-8) per donor cell. During conjugation with Tn5-encoded kanamycin resistance as the selected marker, Tn5 remained in its donor-associated locus in 85 to 100% of the transconjugants. A collection of eight temperature-sensitive donor strains bearing Tn5 insertion mutations from various regions of the C. crescentus genetic map were used to provide a rapid means for the determination of the map location of a new mutation. Use of the techniques described in this paper allowed an expansion of the C. crescentus genetic map to include the relative locations of 32 genes.  相似文献   

17.
Starvation, like many other catabolic conditions, induces loss of skeletal muscle mass by promoting fiber atrophy. In addition to the canonical processes, the starvation-induced response employs many distinct pathways that make it a unique atrophic program. However, in the multiplex of the underlying mechanisms, several components of starvation-induced atrophy have yet to be fully understood and their roles and interplay remain to be elucidated. Here we unveiled the role of tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, in starvation-induced muscle atrophy. Targeted ablation of TRAF6 suppresses the expression of key regulators of atrophy, including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12, and Fn14. Ablation of TRAF6 also improved the phosphorylation of Akt and FoxO3a and inhibited the activation of 5' AMP-activated protein kinase in skeletal muscle in response to starvation. In addition, our study provides the first evidence of the involvement of endoplasmic reticulum stress and unfolding protein response pathways in starvation-induced muscle atrophy and its regulation through TRAF6. Finally, our results also identify lysine 63-linked autoubiquitination of TRAF6 as a process essential for its regulatory role in starvation-induced muscle atrophy.  相似文献   

18.
19.
We have investigated the mechanisms of killing of Escherichia coli by HOCl by identifying protective functions. HOCl challenges were performed on cultures arrested in stationary phase and in exponential phase. Resistance to HOCl in both cases was largely mediated by genes involved in resistance to hydrogen peroxide (H2O2). In stationary phase, a mutation in rpoS, which controls the expression of starvation genes including those which protect against oxidative stress, renders the cells hypersensitive to killing by HOCl. RpoS-regulated genes responsible for this sensitivity were dps, which encodes a DNA-binding protein, and, to a lesser extent, katE and katG, encoding catalases; all three are involved in resistance to H2O2. In exponential phase, induction of the oxyR regulon, an adaptive response to H2O2, protected against HOCl exposure, and the oxyR2 constitutive mutant is more resistant than the wild-type strain. The genes involved in this oxyR-dependent resistance have not yet been identified, but they differ from those primarily involved in resistance to H2O2, including katG, ahp, and dps. Pretreatment with HOCl conferred resistance to H2O2 in an OxyR-independent manner, suggesting a specific adaptive response to HOCl. fur mutants, which have an intracellular iron overload, were more sensitive to HOCl, supporting the generation of hydroxyl radicals upon HOCl exposure via a Fenton-type reaction. Mutations in recombinational repair genes (recA or recB) increased sensitivity to HOCl, indicative of DNA strand breaks. Sensitivity was visible in the wild type only at concentrations above 0.6 mg/liter, but it was observed at much lower concentrations in dps recA mutants.  相似文献   

20.
A common stress encountered by Salmonella serovars involves exposure to membrane-permeabilizing antimicrobial peptides and proteins such as defensins, cationic antibacterial proteins, and polymyxins. We wanted to determine if starvation induces cross-resistance to the membrane-permeabilizing antimicrobial peptide polymyxin B (PmB). We report here that starved and stationary-phase (Luria-Bertani [LB] medium) cells exhibited ca. 200- to 1,500-fold-higher (cross-)resistance to a 60-min PmB challenge than log-phase cells. Genetic analysis indicates that this PmB resistance involves both phoP-dependent and -independent pathways. Furthermore, both pathways were sigma(S) independent, indicating that they are different from other known sigma(S) -dependent cross-resistance mechanisms. Additionally, both pathways were important for PmB resistance early during C starvation and for cells in stationary phase in LB medium. However, only the phoP-independent pathway was important for P-starvation-induced PmB resistance and the sustained PmB resistance seen in 24-h-C-starved (and N-starved) or stationary-phase cells in LB medium. The results indicate the presence of an rpoS- and phoP-independent pathway important to starvation- and stationary-phase-induced resistance to membrane-permeabilizing antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号