首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碘乙酸修饰兔肌甘油醛-3-磷酸脱氢酶蛋白过程中,以NAD~ 类似物代替NAD~ 测定它们对酶蛋白失活速度的影响。在被测的五个NAD~ 类似物中CPAD~ ,FPAD~ 对酶有保护作用,降低了酶因修饰而失活的速度。其它三个类似物NGD~ ,APAD~ 和TPAD~ 在不同程度上加速碘乙酸引起的失活。这些类似物在对碘乙酸修饰速度造成影响方面表现的能力与它们作为氢受体能力相一致。以NAD~ 类似物代替NAD~ 测定它们对酶促乙酰磷酸水解作用的影响。与碘乙酸修饰时有些不同,CPAD~ ,TPAD~ 对这一水解过程无促进作用,而FPAD~ ,NGD~ 和APAD~ 有促进作用。各类似物的行为与羧甲基酶光照形成新萤光团过程中各类似物的行为相一致。  相似文献   

2.
龙虾肌甘油醛-3-磷酸脱氢酶与兔肌酶一样,用碘代乙酸修饰后,在NAD~+存在下经紫外光照射也能形成荧光衍生物。 pH对荧光衍生物的生成和稳定性有很大影响,同时,异类离子的不同影响也很明显。 定磷分析法测定荧光衍生物上的NAD~+含量,同位素示踪法观察衍生物生成过程的脱羧,都证明此光化学反应为半位反应。  相似文献   

3.
用紫外差吸收和萤光方法对甘油醛-3-磷酸脱氢酶及其衍生物的SDS变性动力学研究结果表明,不论对于全酶、酶朊、羧甲基化酶,还是光照酶,在酶浓度为5μM,SDS的浓度为6.24mM,25℃恒温条件下,测量差吸收ΔA_(295)随时间的变化,或在λ_(ex)=305nm,λ_(em)=335nm测萤光强度随时间的变化,其结果均表现为由三个简单一级反应组成的复合一级反应,三个速度常数,对于上述四种酶来说尽管各不相同,但它们的数量级分别为:k_1=1秒~(-1),k_2=10~(-2)秒~(-1),k_3=10~(-3)秒~(-1)。这表明甘油醛-3-磷酸脱氢酶每个亚基中的三个色氨酸由于所处的空间位置的不同,在空间结构发生变化时,分别以不同的速度由酶蛋白分子内部的非极性环境暴露于其外部的极性环境。另外还发现,在这四种酶中,全酶的变性速度最小,而羧甲基化酶的变性速度最大。这说明酶经羧甲基化后空间结构的稳定性减弱,因而更易于为SDS变性。与此同时,我们测定了全酶和酶朊的SDS失活过程,并同它们的变性过程进行了比较。从酶的失活过程类似于变性过程也是由三个一级反应组成的复合一级反应这一事实来看,全酶和酶朊的失活过程似有部分变性并具有部分活力的中间物存在。  相似文献   

4.
平衡柱层析法测得每分子龙虾肌羧甲基化甘油醛-3磷酸脱氢酶能结合3.9分子NAD~+,而每分子光照酶则只能结合2分子NAD~+。 由蛋白荧光淬灭法得到,在25℃、pH7.0的磷酸盐缓冲液中,全酶、羧甲基酶及光照酶与NAD~+结合时均呈负协同性。  相似文献   

5.
本文报道纯化的高粱叶片PEP 羧化酶经氨基修饰剂TNBS 和PLP 的修饰迅速失活。酶的TNBS 失活与保温时间和抑制剂浓度呈函数关系并表现为拟一级反应的特性。动力学资料表明酶仅被1分子TNBS 修饰即失活。TNBS 修饰酶的吸收光谱特性表明被修饰的是酶蛋白的赖氨酸残基。底物(PEP)和效应剂(G6P)保护酶免被TNBS 失活。计算G6P 和酶的解离常数K_d-2.39×10~(-3)M。酶的其他反应组分HCO_3~-和MgCl_2单独存在时均不影响TNBS 对酶的失活作用。在被TNBS 修饰过程中还导致酶对G6P 迅速脱敏,同时却保持酶对甘氨酸的敏感性。  相似文献   

6.
本文比较了蛇肌GAPDH和兔肌GAPDH的稳定性。发现蛇肌Apo-GAPDH的热稳定性比兔肌Apo-GAPDH和Holo-GAPDH强。蛇肌Apo-GAPDH的“熔点”为62.5℃,兔肌Apo-GAPDH的“熔点”为52.5℃。55℃蛇肌Apo-GAPDH的热失活速度比兔肌Apo-GAPDH小得多,蛇肌Apo-GAPDH活力损失一半的时间(t_(1/2))为1.2小时;兔肌Apo-GAPDH t_(1/2)为1.4分。Holo-GAPDH t_(1/2)为2.6分。热失活速度符合一级反应作图。底物存在热失活速度变小,NAD~ 对热失活的保护作用最大,当[NAD~ ]/[E]=240时,热失活速度蛇肌GAPDH小32倍,兔肌GAPDH小165倍,但蛇肌GAPDH仍比兔肌GAPDH稳定。蛇肌GAPDH与兔肌GAPDH的最适pH相同,pH稳定性蛇肌GAPDH比兔肌GAPDH强。蛇肌Apo-GAPDH在pH4.9~9.4稳定,兔肌Apo-GAPDH的pH稳定范围在pH6.1~8.1。ATP在0℃也引起蛇肌GAPDH失活,失活速度比兔肌GAPDH小。结果表明蛇肌GAPDH比兔肌GAPDH稳定性强、结构紧密、亚基间结合力强。  相似文献   

7.
用紫外差吸收和萤光方法对甘油醛-3-磷酸脱氢酶及其衍生物的SDS变性动力学研究结果表明,不论对于全酶、酶朊、羧甲基化酶,还是光照酶,在酶浓度为5μM,SDS的浓度为6.24mM,25℃恒温条件下,测量差吸收ΔA_(295)随时间的变化,或在λ_(ex)=305nm,λ_(em)=335nm测萤光强度随时间的变化,其结果均表现为由三个简单一级反应组成的复合一级反应,三个速度常数,对于上述四种酶来说尽管各不相同,但它们的数量级分别为:k_1=1秒~(-1),k_2=10~(-2)秒~(-1),k_3=10~(-3)秒~(-1)。这表明甘油醛-3-磷酸脱氢酶每个亚基中的三个色氨酸由于所处的空间位置的不同,在空间结构发生变化时,分别以不同的速度由酶蛋白分子内部的非极性环境暴露于其外部的极性环境。另外还发现,在这四种酶中,全酶的变性速度最小,而羧甲基化酶的变性速度最大。这说明酶经羧甲基化后空间结构的稳定性减弱,因而更易于为SDS变性。与此同时,我们测定了全酶和酶朊的SDS失活过程,并同它们的变性过程进行了比较。从酶的失活过程类似于变性过程也是由三个一级反应组成的复合一级反应这一事实来看,全酶和酶朊的失活过程似有部分变性并具有部分活力的中间物存在。  相似文献   

8.
本文比较了蛇肌GAPDH和兔肌GAPDH的稳定性。发现蛇肌Apo-GAPDH的热稳定性比兔肌Apo-GAPDH 和Holo-GAPDH 强。蛇肌Apo-GAPDH 的“熔点”为62.5℃。C,兔肌Apo-GAPDH 的“熔点”为52.5℃。55℃蛇肌Apo-GAPDH 的热失活速度比兔肌Apo-GAPDH 小得多,蛇肌Apo-GAPDH 活力损失一半的时间(t_(1/2)为1.2小时;兔肌Apo-GAPDH t_(1/2)为1.4分。Holo-GAPDH t_(1/2)为2.6分。热失活速度符合一级反应作图。底物存在热失活速度变小,NAD~ 对热失活的保护作用最大,当[NAD~ ]/[E]=240时,热失活速度蛇肌GAPDH 小32倍,兔肌GAPDH 小165倍,但蛇肌GAPDH 仍比兔肌GAPDH 稳定。蛇肌GAPDH 与兔肌GAPDH 的最适pH 相同,pH 稳定性蛇肌GAPDH 比兔肌GAPDH 强。蛇肌Apo-GAPDH 在pH4.9~9.4稳定,兔肌Apo-GAPDH 的pH 稳定范围在pH6.1~8.1。ATP 在0℃也引起蛇肌GAPDH 失活,失活速度比兔肌GAPDH 小。结果表明蛇肌GAPDH 比兔肌GAPDH 稳定性强、结构紧密、亚基间结合力强。  相似文献   

9.
本文报道纯化的高粱叶片PEP羧化酶经氨基修饰剂TNBS和PLP的修饰迅速失活。酶的TNBS失活与保温时间和抑制剂浓度呈函数关系并表现为拟一级反应的特性。动力学资料表明酶仅被1分子TNBS修饰即失活。TNBS修饰酶的吸收光谱特性表明被修饰的是酶蛋白的赖氨酸残基。底物(PEP)和效应剂(G6P)保护酶免被TNBS失活。计算G6P和酶的解离常数K_d=2.39×10~(-3)M。酶的其他反应组分HCO_3~-和MgCl_2单独存在时均不影响TNBS对酶的失活作用。在被TNBS修饰过程中还导致酶对G6P迅速脱敏,同时却保持酶对甘氨酸的敏感性。  相似文献   

10.
兔肌甘油醛-3-磷酸脱氢酶以NADP~ 作氢受体时,有极轻微的活力,实验表明它不是由于所用NADP~ 试剂中含有NAD~ 或酶制剂中含有磷酸酯酶、转氢酶等造成的干扰。采用高浓度酶对纯化后的NADP~ 测定结果是:NADP~ 作为氢受体的活力仅及NAD~ 的二百分之一。米氏常数K_m为700μm。NADP~ 对NAD~ 的还原无明显抑制作用。不同来源的甘油醛-3-磷酸脱氢酶对辅酶专一性程度有差别,酵母酶的专一性较兔肌酶为高:NADP~ 作为氢受体的活力仅为NAD~ 的千分之一。  相似文献   

11.
甘油醛-3-磷酸:NAD氧还酶(甘油醛-3-磷酸脱氢酶,酶学委员会编号1.2.1.12)是一个典型需要巯基的酶。许多巯基试剂如碘代乙酸或对氯汞苯甲酸等皆能完全抑制酶的活力。近年来一些作者曾利用标记的碘代乙酸研究了酶和抑制剂的结合当量。我们发现对硝基苯氨甲酰甲基溴(以下简  相似文献   

12.
王薇  刘一苇  李宏滨 《生物工程学报》2013,29(12):1828-1835
利用“酶晶体低温抑活底物固定”方法,在?20 ℃条件下,将6-磷酸-β-葡萄糖苷酶 (BglA) 晶体与底物对硝基苯-β-D-吡喃葡萄糖苷-6-磷酸 (pNPβG6P) 进行浸泡试验,通过X射线进行衍射数据收集并处理,获得了完整的底物电子密度图。研究结果表明,在不突变酶中关键基团使酶失活,以及不选用底物类似物替代原有底物的情况下,通过上述方法,可以获得酶与底物复合物的实际结构。该研究结果可为今后低温酶学及复合物中间态的进一步研究提供帮助。  相似文献   

13.
葡萄糖-6-磷酸脱氢酶是磷酸戊糖途径(HMP)的限速酶,在十字花科黑腐病菌8004的基因组中,有2个基因XC1977和XC4082被注释为葡萄糖-6-磷酸脱氢酶(G6PD)。前期工作发现XC1977突变后,细胞的胞外多糖产量明显降低,而XC4082突变不影响胞外多糖产量。为明确这两个基因的编码产物在Xcc中的生化功能,本工作表达纯化了这两个蛋白,并对这两个蛋白的特征进行分析,发现这两个蛋白均具有6-葡萄糖脱氢酶的活性,但是它们的最适反应温度、最适反应pH、金属离子和烷化剂的敏感性完全不同。而且,XC1977以NAD~+和NADP~+为电子受体,而XC4082只能以NADP~+为电子受体。在以NAD~+和NADP~+为受体时,XC1977的K_m值分别为0.125 mmol/L和0.927 mmol/L,而XC4082以NADP~+为受体时的K_m值为0.364 mmol/L。这表明Xcc细胞合成胞外多糖时,需要NAD~+参与能量代谢。  相似文献   

14.
CM-GAPDH在碘化钾溶液中,NAD~+的存在下,形成发射波长为383nm的荧光物。对照的NAD~+与碘化钾溶液混合不产生荧光物。全位及半位修饰光照酶的内源荧光在碘化钾溶液中的变化与天然酶的有明显不同。两者在碘化钾中都形成383nm的荧光,但全位修饰光照酶形成383nm荧光的最适碘化钾浓度为1.0M;半位修饰的为0.8M。以上结果暗示:383nm荧光物的形成需要GAPDH和NAD~+同时存在,并且与活性部位巯基修饰的多少有关,该荧光物可能位于GAPDH的活性部位。  相似文献   

15.
丁二酮能使GAO迅速失活,其失活速度受介质pH和硼酸浓度的显著影响;其修饰反应具可逆性,当透析除去修饰剂和硼酸时,活性得到恢复。失活进程表现为假一级动力学。而计算表明,酶的每一活性中心单位与一分子丁二酮结合便可引起酶的失活。底物和竞争性抑制剂均能有效地保护酶免于失活。氨基酸分析表明,酶的失活是因为丁二酮修饰了精氨酸残基。丁二酮修饰GAO后使酶的K_m增大,而V_m没有变化。  相似文献   

16.
CM-GAPDH在碘化钾溶液中,NAD~+的存在下,形成发射波长为383nm的荧光物。对照的NAD~+与碘化钾溶液混合不产生荧光物。全位及半位修饰光照酶的内源荧光在碘化钾溶液中的变化与天然酶的有明显不同。两者在碘化钾中都形成383nm的荧光,但全位修饰光照酶形成383nm荧光的最适碘化钾浓度为1.0M;半位修饰的为0.8M。以上结果暗示:383nm荧光物的形成需要GAPDH和NAD~+同时存在,并且与活性部位巯基修饰的多少有关,该荧光物可能位于GAPDH的活性部位。  相似文献   

17.
应用NEM对酶的化学修饰技术,报导了半胱氨酸残基与高粱叶片的PEP羧化酶催化功能的关系。结果表明,NEM修饰使PEP羧化酶活性丧失。酶的失活速度表现为拟一级反应动力学特性。随NEM浓度的增加酶的失活速度加快。不同效应剂对酶的NEM失活具不同影响。油酸和MgCl_2促进酶的失活,G6P、甘氨酸和苹果酸各具有不同程度的保护作用。以P_(0.5)值来比较G6P和甘氨酸的保护效果,其值各为4.17mM和3.44mM。而当这两种效应剂以等量浓度同时存在时,P_(0.5)值下降为0.06mM,表现出它们的协同保护作用。从复合效应剂对酶的热失活速度和最大反应速度(V_(max))的影响亦可看出这种协同作用的存在。上述两方面的结果表明G6P和甘氨酸同时存在时诱发的酶的构象状态与它们分别存在时诱发的构象状态各不相同。根据这些结果提出了高粱叶片的PEP羧化酶可能存在的多构象状态模型,并对其生理意义进行了讨论。  相似文献   

18.
兔肌甘油醛-3-磷酸脱氢酶以NADP~ 作氢受体时,有极轻微的活力,实验表明它不是由于所用NADP~ 试剂中含有NAD~ 或酶制剂中含有磷酸酯酶、转氢酶等造成的干扰。采用高浓度酶对纯化后的NADP~ 测定结果是:NADP~ 作为氢受体的活力仅及NAD~ 的二百分之一。米氏常数K_m为700μm。NADP~ 对NAD~ 的还原无明显抑制作用。不同来源的甘油醛-3-磷酸脱氢酶对辅酶专一性程度有差别,酵母酶的专一性较兔肌酶为高:NADP~ 作为氢受体的活力仅为NAD~ 的千分之一。  相似文献   

19.
应用化学修饰的方法观察精氨酸残基在PEP羧化酶的催化和调节功能中的作用。用丁二酮在硼酸盐缓冲液存在下处理PEP羧化酶使酶活性迅速丧失。其失活速度表现为拟一级反应动力学特性。 低温处理(15℃),或者PEP、G6P、甘氨酸,苹果酸,G6P加甘氨酸和PEP加甘氨酸等酶的底物和效应剂的存在对酶的丁二酮失活均具不同程度的保护作用。PEP和G6P的P_(0.5)值各为4mM和1.5mM。 丁二酮对酶的修饰表现为可逆失活。在Tris-H_2SO_4缓冲液中透析可使被丁二酮修饰而丧失的酶活性恢复。 丁二酮处理还使酶失去对G6P的敏感性,但不影响甘氨酸对酶的调节作用。低温(15℃)下丁二酮修饰酶的G6P脱敏速度比常温下(30℃)底物保护的修饰酶的G6P脱敏速度慢。比较脱敏速度常数(k_(dG6P))前者是0.0116(分~(-1)),后者是0.0562(分~(-1))。甘氨酸的加入不影响底物保护的修饰酶的G6P脱敏速度而明显降低酶的丁二酮失活速度。 这些结果表明精氨酸残基不仅存在于酶的催化部位并为酶的催化所必需,同时还存在于酶的G6P结合部位而参与G6P对酶的调节功能。  相似文献   

20.
高粱叶片的PEP羧化酶对温度很敏感,在45℃下迅速失活。加入变构活化剂G6P或者甘氨酸对酶的稳定性没有明显的影响。但当在C6P和甘氨酸同时存在时,酶对高温的稳定性则大大提高了。PEP羧化酶在低温中也不稳定。4℃下很快失活。酶的这种冷失活现象也可为加入效应剂G6P和甘氨酸所防止。 比较一些多羟基醇类对酶的热稳定性的影响,表明它们都显著地提高酶的热稳定性。山梨醇的保护作用最强,赤藓醇次之,甘油又次之。说明保护效应与保护剂的羟基数有关。应用含有G6P、甘氨酸和甘油(GGG)的缓冲液对提高酶在纯化和贮存过程中的稳定性非常有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号