首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Q Wei  K Mizuuchi    R Craigie 《The EMBO journal》1997,16(24):7511-7520
We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system. We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome. This structure is not formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity. Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction. Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo.  相似文献   

2.
Cytoplasmic extracts prepared from cells infected with metabolically radiolabeled virions of human immunodeficiency virus type 1 contain viral DNA in association with labeled viral proteins. Viral DNA can be purified from these extracts by gel filtration chromatography and sucrose gradient sedimentation as a part of a nucleoprotein complex containing integrase as the only viral protein detectable by immunoprecipitation and gel electrophoretic analysis. The purified complex contains no detectable gag gene products, including p17, p24, p7, or p6, and contains no additional pol gene products, including the p10 protease, p66 and p51 polymerase, or the p15 RNase H. Nearly all of the purified nucleoprotein complexes are capable of integrating into heterologous DNA targets in vitro. These observations demonstrate that integrase is a component of the human immunodeficiency virus type 1 preintegration complex and suggest that integrase may be the only viral protein necessary for the integration of retroviral DNA.  相似文献   

3.
Integration of retroviral cDNA in vivo is normally not sequence specific with respect to the integration target DNA. We have been investigating methods for directing the integration of retroviral DNA to predetermined sites, with the dual goal of understanding potential mechanisms governing normal site selection and developing possible methods for gene therapy. To this end, we have fused retroviral integrase enzymes to sequence-specific DNA-binding domains and investigated target site selection by the resulting proteins. In a previous study, we purified and analyzed a fusion protein composed of human immunodeficiency virus integrase linked to the DNA-binding domain of lambda repressor. This fusion could direct selective integration in vitro into target DNA containing lambda repressor binding sites. Here we investigate the properties of a fusion integrase in the context of a human immunodeficiency virus provirus. We used a fusion of integrase to the DNA binding domain of the zinc finger protein zif268 (IN-zif). Initially we found that the fusion was highly detrimental to replication as measured by the multinuclear activation of a galactosidase indicator (MAGI) assay for infected centers. However, we found that viruses containing mixtures of wild-type integrase and IN-zif were infectious. We prepared preintegration complexes from cells infected with these viruses and found that such complexes directed increased integration near zif268 recognition sites.  相似文献   

4.
The preintegration complex of human immunodeficiency virus type 1 (HIV-1) is a large nucleoprotein complex containing viral nucleic acids in association with products of the viral gag and pol genes. One of these proteins, integrase, is absolutely required for the integration and formation of the provirus. Although HIV-1-specific 2-LTR circles from nuclei of HIV-1-infected cells were found to be associated within a high-molecular-weight nucleoprotein complex, antibodies to HIV-1 integrase failed to precipitate this form of viral DNA. This result indicates that circular forms of HIV-1 DNA are not associated with integrase. These viral DNA forms seem to exist in a context of a nucleoprotein complex that is different from a preintegration complex of HIV-1.  相似文献   

5.
Yuan B  Fassati A  Yueh A  Goff SP 《Journal of virology》2002,76(21):10801-10810
Mutations affecting either the N- or C-terminal regions of the Gag protein p12 block replication of Moloney murine leukemia virus (M-MuLV). Viruses carrying mutations in this portion of gag can mediate the assembly and release of virions but are unable to successfully carry out the early phase of the M-MuLV life cycle. Wild-type and mutant viruses were found to synthesize similar levels of linear viral DNA in both cytoplasmic and nuclear fractions, and there were no significant differences in either the density or sedimentation of the viral protein-nucleic acid complexes. Analysis of the termini of the linear viral DNAs showed that the 3' ends of the mutant viral DNA were processed normally by the integrase. Further, the preintegration complexes extracted from the cytoplasm of cells infected with the mutant viruses were competent for integration into target DNA in vitro. Nevertheless, no circular viral DNAs were detected in cells infected by the mutants, and functional proviruses were not formed. These results suggest that p12 has an unexpected role in the early phase of the life cycle and is needed after viral DNA synthesis to deliver the incoming DNA to the correct location and in the appropriate state to permit either circularization or integration of the viral DNA in vivo.  相似文献   

6.
7.
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.  相似文献   

8.
Chen H  Engelman A 《Journal of virology》2000,74(17):8188-8193
Two activities of retroviral integrase, 3' processing and DNA strand transfer, are required to integrate viral cDNA into a host cell chromosome. Integrase activity has been analyzed in vitro using purified protein and recombinant DNA substrates that model the U3 and U5 ends of viral cDNA or by using viral preintegration complexes (PICs) that form during virus infection. Numerous studies have investigated changes in integrase or viral DNA for effects on both 3' processing and DNA strand transfer activities using purified protein, but similar analyses have not been carried out using PICs. Here, we analyzed PICs from human immunodeficiency virus type 1 (HIV-1) strain 604del, an integration-defective mutant lacking 26 bp of U5, and revE1, a revertant of 604del containing an additional 19-bp deletion, for levels of 3' processing activity that occurred in infected cells and for levels of in vitro DNA strand transfer activity. Whereas revE1 supported one-third to one-half of the level of wild-type DNA strand transfer activity, the level of 604del DNA strand transfer activity was undetectable. Surprisingly, integrase similarly processed the 3' ends of 604del and revE1 in vivo. We therefore conclude that 604del is blocked in its ability to replicate in cells after the 3' processing step of retroviral integration. Whereas Western blotting showed that wild-type, revE1, and 604del PICs contained similar levels of integrase protein, Mu-mediated PCR footprinting revealed only minimal protein-DNA complex formation at the ends of 604del cDNA. We propose that 604del is replication defective because proteins important for DNA strand transfer activity do not stably associate with this cDNA after in vivo 3' processing by integrase.  相似文献   

9.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.  相似文献   

10.
Integration of HIV-1 (human immunodeficiency virus type 1) DNA into the genome of the host cell is an essential step in the viral replication cycle that is mediated by the virally encoded integrase protein. We have used atomic force microscopy to study stable complexes formed between HIV-1 integrase and viral DNA and their interaction with host DNA. A tetramer of integrase stably bridges a pair of viral DNA ends, consistent with previous analysis by gel electrophoresis. The intasome, composed of a tetramer of integrase bridging a pair of viral DNA ends, is highly stable to high ionic strength that would strip more loosely associated integrase from internal regions of the viral DNA. We also observed tetramers of integrase associated with single viral DNA ends; time-course experiments suggest that these may be intermediates in intasome assembly. Strikingly, integrase tetramers are only observed in tight association with viral DNA ends. The self-association properties of intasomes suggest that the integrase tetramer within the intasome is different from the integrase tetramer formed at high concentration in solution in the absence of viral DNA. Finally, the integration product remains tightly bound by the integrase tetramer, but the 3′ ends of the target DNA in the complex are not restrained and are free to rotate, resulting in relaxation of initially supercoiled target DNA.  相似文献   

11.
Integration of viral DNA into the host genome is an essential step in retroviral replication that is mediated by a stable nucleoprotein complex comprising a tetramer of integrase bridging the two ends of the viral DNA in a stable synaptic complex (SSC) or intasome. Assembly of HIV‐1 intasomes requires several hundred base pairs of nonspecific internal DNA in addition to the terminal viral DNA sequence that is protected in footprinting experiments. We find that only one of the viral DNA ends in the intasome requires long‐nonspecific internal DNA for intasome assembly. Although intasomes are unstable in solution when the nonspecific internal DNA is cut off after assembly, they are stable in agarose gels. These complexes are indistinguishable from SSCs with nonspecific internal DNA in Förster resonance energy transfer (FRET) experiments suggesting the interactions with the viral DNA and integrase tetramer are the same regardless of the presence of nonspecific internal DNA. We discuss models of how the internal DNA contributes to intasome assembly and stability. FRET is exquisitely sensitive to the distance between the fluorophores and given certain assumptions can be translated to distance measurements. We anticipated that a set of such distance constraints would provide a map of the DNA path within the intasome. In reality, the constraints we could impose from the FRET data were quite weak allowing a wide envelope for the possible path. We discuss the difficulties of converting the FRET signal to absolute distance within nucleoprotein complexes.  相似文献   

12.
13.
Retroviral replication requires the integration of reverse-transcribed viral cDNA into a cell chromosome. A key barrier to forming the integrated provirus is the nuclear envelope, and numerous regions in human immunodeficiency virus type 1 (HIV-1) have been shown to aid the nuclear localization of viral preintegration complexes (PICs) in infected cells. One region in integrase (IN), composed of Val-165 and Arg-166, was reportedly essential for HIV-1 replication and nuclear localization in all cell types. In this study we confirmed that HIV-1(V165A) and HIV-1(R166A) were replication defective and that less mutant viral cDNA localized to infected cell nuclei. However, we present three lines of evidence that argue against a specific role for Val-165 and Arg-166 in PIC nuclear import. First, results of transient transfections revealed that V165A FLAG-tagged IN and green fluorescent protein-IN fusions carrying either V165A or R166A predominantly localized to cell nuclei. Second, two different strains of previously described class II IN mutant viruses displayed similar nuclear entry profiles to those observed for HIV-1(V165A) and HIV-1(R166A), suggesting that defective nuclear import may be a common phenotype of replication-defective IN mutant viruses. Third, V165A and R166A mutants were defective for in vitro integration activity, when assayed both as PICs isolated from infected T-cells and as recombinant IN proteins purified from Escherichia coli. Based on these results, we conclude that HIV-1(V165A) and HIV-1(R166A) are pleiotropic mutants primarily defective for IN catalysis and that Val-165 and Arg-166 do not play a specific role in the nuclear localization of HIV-1 PICs in infected cells.  相似文献   

14.
15.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

16.
Integrase is the only viral protein necessary for integration of retroviral DNA into chromosomal DNA of the host cell. Biochemical analysis of human immunodeficiency virus type 1 (HIV-1) integrase with purified protein and synthetic DNA substrates has revealed extensive information regarding the mechanism of action of the enzyme, as well as identification of critical residues and functional domains. Since in vitro reactions are carried out in the absence of other viral proteins and they analyze strand transfer of only one end of the donor substrate, they do not define completely the process of integration as it occurs during the course of viral infection. In an effort to further understand the role of integrase during viral infection, we initially constructed a panel of 24 HIV-1 mutants with specific alanine substitutions throughout the integrase coding region and analyzed them in a human T-cell line infection. Of these mutant viruses, 12 were capable of sustained viral replication, 11 were replication defective, and 1 was temperature sensitive for viral growth. The replication defective viruses express and correctly process the integrase and Gag proteins. Using this panel of mutants and an additional set of 18 mutant viruses, we identified nine amino acids which, when replaced with alanine, destroy integrase activity. Although none of the replication-defective mutants are able to integrate into the host genome, a subset of them with alterations in the catalytic triad are capable of Tat-mediated transactivation of an indicator gene linked to the viral long terminal repeat promoter. We present evidence that integration of the HIV-1 provirus is essential not only for productive infection of T cells but also for virus passage in both cultured peripheral blood lymphocytes and macrophage cells.  相似文献   

17.
Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) comprising a pair of viral DNA ends synapsed by a tetramer of integrase. Current integrase inhibitors act on intasomes rather than free integrase protein. Structural and functional studies of intasomes are essential to understand their mechanism of action and how the virus can escape by mutation. To date, prototype foamy virus (PFV) is the only retrovirus for which high‐resolution structures of intasomes have been determined. In the PFV intasome structure, only the core domains of the outer subunits are ordered; the N‐terminal domain, C‐terminal domain, and N‐terminal extension domain are disordered. Are these “missing domains” required for function or are they dispensable? We have devised a strategy to assemble “hetero‐intasomes” in which the outer domains are not present as a tool to assess the functional role of the missing domains for catalysis of integration. We find that the disordered domains of outer subunits are not required for intasome assembly or catalytic activity as catalytic core domains can substitute for the outer subunits in the case of both PFV and HIV‐1 intasomes.  相似文献   

18.
19.
A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3′ OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5′-end labeled viral DNA ends in the synaptic complex (0.68 ± 0.09) was significantly different from that observed in the strand transfer complex (0.07 ± 0.02). The calculated distances were 46 ± 3 Å and 83 ± 5 Å, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to ∼ 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (> 120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex.  相似文献   

20.
Retrovirus integrase (IN) integrates the viral linear DNA genome (10 kb) into a host chromosome, a step which is essential for viral replication. Integration occurs via a nucleoprotein complex, termed the preintegration complex (PIC). This article focuses on the reconstitution of synaptic complexes from purified components whose molecular properties mirror those of the PIC, including the efficient concerted integration of two ends of linear viral DNA into target DNA. The methods described herein permit the biochemical and biophysical analyses of concerted integration. The methods enable (1) the study of interactions between purified recombinant IN and its viral DNA substrates at the molecular level; (2) the identification and characterization of nucleoprotein complexes involved in the human immunodeficiency virus type-1 (HIV-1) concerted integration pathway; (3) the determination of the multimeric state of IN within these complexes; (4) dissection of the interaction between HIV-1 IN and cellular proteins such as lens epithelium-derived growth factor (LEDGF/p75); (5) the examination of HIV-1 Class II and strand transfer inhibitor resistant IN mutants; (6) the mechanisms associated with strand transfer inhibitors directed against HIV-1 IN that have clinical relevance in the treatment of HIV-1/AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号