首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies show that the Hsp90 complex facilitates binding of duck hepatitis B virus polymerase on the epsilon stem-loop region in pregenomic RNA for the priming of Pol. In this report, we found that Hsp90 also binds to human HBV Pol and its binding seems to be involved in in vitro priming of human HBV Pol. (i) Inhibition of Hsp90 by anti-Hsp90 antibody (3G3) and (ii) the stripping of the Hsp90 by 1 M NaCl buffer containing 1% NP-40 almost completely reduced in vitro priming activity of human HBV Pol expressed in insect cells. However, binding of human HBV Pol to pregenomic RNA is different from that of duck HBV Pol. It seems that Hsp90 makes the human HBV Pol competent for in vitro priming rather than maintaining the human HBV Pol/pregenomic RNA complex as duck HBV Pol. In addition, although Hsp70 is a component of the Hsp90 complex, Hsp70 can directly bind to human HBV Pol without Hsp90.  相似文献   

2.
Previous studies showed that hepatitis B virus polymerase (HBV Pol) interacts with host factors such as the Hsp90 complex, which is a critical step in viral genome replication. In this report, we propose that another chaperone, Hsp60, interacts with human HBV Pol and that this is a very important step for maturation of human HBV Pol into the active state. In the immunoprecipitation of recombinant human HBV Pol expressed in insect cells with the recombinant baculovirus expression system, the 60-kDa protein was coimmunoprecipitated with Pol and the protein was identified as Hsp60 through peptide sequencing and immunogenic analysis with an anti-Hsp60 antibody. In vitro experiments showed that Hsp60 strongly affected human HBV Pol activity in that (i) blocking of Hsp60 by the protein-specific antibody reduced human HBV Pol activity, (ii) the activity was increased by addition of Hsp60 in the presence of ATP, and (iii) ATP synergistically activated human HBV Pol with Hsp60. In vivo experiments showed that inhibition of Hsp60 in cells by a mutant Hsp60, C Delta 540, resulted in the reduction of human HBV Pol activity. In summary, our results indicate that the interaction is significant for conversion of human HBV Pol into the active state.  相似文献   

3.
Hepatitis B virus (HBV) polymerase (Pol) interacts with cellular chaperone proteins and thereby performs multiple functions necessary for viral replication. Yeast two-hybrid analysis was applied to identify additional cellular targets required for HBV Pol function. HBV Pol interacted with S100A10 (p11), a Ca(2+)-modulated protein previously shown to bind to annexin II. The interaction between HBV Pol and p11 was confirmed by co-immunoprecipitation of the two proteins synthesized either in vitro or in transfected cells and by inhibition of the DNA polymerase activity of HBV Pol by p11. Immunofluorescence analysis of transfected human cell lines revealed that, although most HBV Pol and p11 was restricted to the cytoplasm, a small proportion of each protein colocalized as nuclear speckles; HBV Pol was not detected in the nucleus in the absence of p11. The HBV Pol-p11 nuclear speckles coincided with nuclear bodies containing the promyelocytic leukemia protein PML. Furthermore, the association of HBV Pol-p11 with PML was increased by exposure of cells to EGTA and inhibited by valinomycin. These results suggest a role for p11 in modulation of HBV Pol function and implicate PML nuclear bodies and intracellular Ca(2+) in viral replication.  相似文献   

4.
5.
Hepatitis B virus (HBV) infection is a major health concern with more than two billion individuals currently infected worldwide. Despite the prevalence of infection, gaining a complete understanding of the molecular mechanisms of HBV infection has been difficult because HBV cannot infect common immortalized cell lines. HepG2.2.15, however, is a well established version of the HepG2 cell line that constitutively expresses HBV. Therefore, comparative proteomics analysis of HepG2.2.15 and HepG2 may provide valuable clues for understanding the HBV virus life cycle. In this study, two-dimensional blue native/SDS-PAGE was utilized to characterize different multiprotein complexes from whole cell lysates between HepG2.2.15 and HepG2. These results demonstrate that two unique protein complexes existed in HepG2.2.15 cells. When these complexes were excised from the gel and subjected to the second dimension separation and the proteins were sequenced by mass spectrometry, 20 non-redundant proteins were identified. Of these proteins, almost 20% corresponded to heat shock proteins, including HSP60, HSP70, and HSP90. Antibody-based supershift assays were used to verify the validity of the distinct protein complexes. Co-immunoprecipitation assays confirmed that HSP60, HSP70, and HSP90 proteins physically interacted in HepG2.2.15 but not HepG2 cells. We further demonstrated that down-regulation of HSP70 or HSP90 by small interfering RNA significantly inhibited HBV viral production but did not influence cellular proliferation or apoptosis. Consistent with these results, a significant reduction in HepG2.2.15 HBV secretion was observed when the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin was used to treat HepG2.2.15 cells. Collectively these results suggest that the interaction of HSP90 with HSP70/HSP60 contributes to the HBV life cycle by forming a multichaperone machine that may constitute therapeutic targets for HBV-associated diseases.  相似文献   

6.
Expanding on the possible protein interaction partners in a biochemical pathway is one key molecular goal in the post-genomic era. Phage peptide display is a versatile in vitro tool for mapping novel protein-protein interfaces and the advantage of this technique in expanding protein interaction maps is that in vitro manipulation of the bait protein conformational integrity can be controlled carefully. Phage peptide display was used to expand on the possible types of binding proteins for the conformationally responsive protein MDM2. Peptides enriched differ depending upon whether MDM2 is ligand-free, zinc-bound, or RNA-bound, suggesting that MDM2 conformational changes alter the type of peptide ligands enriched. Classes of putative/established MDM2-binding proteins identified by this technique included ubiquitin-modifying enzymes (F-box proteins, UB-ligases, UBC-E1) and apoptotic modifiers (HSP90, GAS1, APAF1, p53). Of the many putative MDM2 proteins that could be examined, the impact of HSP90 on MDM2 activity was studied, since HSP90 has been linked with p53 protein unfolding in human cancers. Zinc ions were required to reconstitute a stable MDM2-HSP90 protein complex. Zinc binding converted MDM2 from a monomer to an oligomer, and activated MDM2 binding to its internal RING finger domain, providing evidence for a conformational change in MDM2 protein when it binds zinc. Reconstitution of an HSP90-MDM2 protein complex in vitro stimulated the unfolding of the p53 tetramer. A p53 DNA-binding inhibitor purified from human cells that is capable of unfolding p53 at ambient temperature in vitro contains co-purifying pools of HSP90 and MDM2. These data highlight the utility of phage peptide display as a powerful in vitro method to identify regulatory proteins that bind to a conformationally flexible protein like MDM2.  相似文献   

7.
Mapping the HSP90 binding region of the glucocorticoid receptor   总被引:11,自引:0,他引:11  
In animal cells, unliganded steroid receptors are complexed with a 90-kDa heat shock protein, HSP90; hormone binding by the receptor leads to the release of HSP90. We found that the 795-amino acid rat glucocorticoid receptor protein formed oligomeric complexes in vitro upon synthesis in rabbit reticulocyte lysates; these oligomers also dissociated in the presence of hormone. Similar complexes formed when X795, a receptor derivative containing only the C-terminal half (amino acids 407-795) of the protein, was translated in vitro. Moreover, X795 was co-immunoadsorbed from the reticulocyte lysates together with HSP90 by three different anti-HSP90 monoclonal antibodies, indicating that the in vitro translated receptor binds HSP90 and that the interaction occurs within the C-terminal half of the receptor. To localize the HSP90 binding region in greater detail, various deletion mutants of X795 were translated in vitro and assayed for oligomer formation and for co-immunoadsorption with HSP90. The results indicated that HSP90 interacted with the receptor within a subregion of the hormone binding domain, between amino acids 568 and 616. These findings are consistent with the proposal that HSP90 may participate in the mechanism of signal transduction by steroid receptors.  相似文献   

8.
Recent data suggest that plant disease resistance (R) proteins are present in multi-protein complexes. Tomato R protein I-2 confers resistance against the fungal pathogen Fusarium oxysporum. To identify components of the I-2 complex, we performed yeast two-hybrid screens using the I-2 leucine-rich repeat (LRR) domain as bait, and identified protein phosphatase 5 (PP5) as an I-2 interactor. Subsequent screens revealed two members of the cytosolic heat shock protein 90 (HSP90) family as interactors of PP5. By performing in vitro protein-protein interaction analysis using recombinant proteins, we were able to show a direct interaction between I-2 and PP5, and between I-2 and HSP90. The N-terminal part of the LRR domain was found to interact with HSP90, whereas the C-terminal part bound to PP5. The specific binding of HSP90 to the N-terminal region of the I-2 LRR domain was confirmed by co-purifying HSP90 from tomato lysate using recombinant proteins. Similarly, the interaction between PP5 and HSP90 was established. To investigate the role of PP5 and HSP90 for I-2 function, virus-induced gene silencing was performed in Nicotiana benthamiana. Silencing of HSP90 but not of PP5 completely blocked cell death triggered by I-2, showing that HSP90 is required for I-2 function. Together these data suggest that R proteins require, like steroid hormone receptors in animal systems, an HSP90/PP5 complex for their folding and functioning.  相似文献   

9.
In eukaryotic cells, HSP90 is associated with several protein kinases and regulates their activities. HSP90 was also reported to possess an autophosphorylase activity. In this study, we examined in vitro autophosphorylation of HSP90, which was purified from chick muscle. We show that HSP90 was not phosphorylated in vitro, but an 84-kDa protein (p84) was highly phosphorylated. P84 was neither HSP90 nor its degradative product, as it was not detected by an antibody (BF4) specific to HSP90 in denaturing immunoprecipitation and Western blot analysis. Phosphorylation of a protein similar to p84 was also detected with purified human brain and HeLa HSP90, indicating that p84 is present in many different types of cells. P84 appeared to exist as large complexes, as determined by HPLC and native gel electrophoresis. Native immunoprecipitation using anti-HSP90 (BF4)-conjugated Affi-gel revealed that this phosphoprotein is specifically associated with HSP90. The interaction of p84 and HSP90 was not affected by p84 phosphorylation. In addition, p84 phosphorylation was prevented by the presence of divalent cations such as Mg(2+) and Mn(2+). In contrast, p84 phosphorylation was significantly activated by addition of exogenous Ca(2+) between 100 and 500 microM, although it was blocked by higher concentrations (>1 mM) of Ca(2+). HSP90, but not p84, could be phosphorylated by casein kinase II. Finally, p84 phosphorylation was specifically prevented by hemin, but not by other kinase inhibitors, indicating that p84 phosphorylation may be regulated by heme-regulated protein kinase.  相似文献   

10.
Hepadnavirus polymerases are multifunctional enzymes that play critical roles during the viral life cycle but have been difficult to study due to a lack of a well-defined panel of monoclonal antibodies (MAbs). We have used recombinant human hepatitis B virus (HBV) polymerase (Pol) expressed in and purified from baculovirus-infected insect cells to generate a panel of six MAbs directed against HBV Pol protein. Such MAbs were subsequently characterized with respect to their isotypes and functions in analytical and preparative assays. Using these MAbs as probes together with various deletion mutants of Pol expressed in insect cells, we mapped the B-cell epitopes of Pol recognized by these MAbs to amino acids (aa) 8 to 20 and 20 to 30 in the terminal protein (TP) region of Pol, to aa 225 to 250 in the spacer region, and to aa 800 to 832 in the RNase H domain. Confocal microscopy and immunocytochemical studies using various Pol-specific MAbs revealed that the protein itself appears to be exclusively localized to the cytoplasm. Finally, MAbs specific for the TP domain, but not MAbs specific for the spacer or RNase H regions of Pol, appeared to inhibit Pol function in the in vitro priming assay, suggesting that antibody-mediated interference with TP may now be assessed in the context of HBV replication.  相似文献   

11.
12.
Viral infection leads to induction of pattern-recognition receptor signaling, which leads to interferon regulatory factor (IRF) activation and ultimately interferon (IFN) production. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV), which causes chronic infection in the liver, the evasion strategy remains uncertain. We now show that HBV polymerase (Pol) blocks IRF signaling, indicating that HBV Pol is the viral molecule that effectively counteracts host innate immune response. In particular, HBV Pol inhibits TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε), the effector kinases of IRF signaling. Intriguingly, HBV Pol inhibits TBK1/IKKε activity by disrupting the interaction between IKKε and DDX3 DEAD box RNA helicase, which was recently shown to augment TBK1/IKKε activity. This unexpected role of HBV Pol may explain how HBV evades innate immune response in the early phase of the infection. A therapeutic implication of this work is that a strategy to interfere with the HBV Pol-DDX3 interaction might lead to the resolution of life-long persistent infection.  相似文献   

13.
Luo S  Zhang B  Dong XP  Tao Y  Ting A  Zhou Z  Meixiong J  Luo J  Chiu FC  Xiong WC  Mei L 《Neuron》2008,60(1):97-110
Rapsyn, an acetylcholine receptor (AChR)-interacting protein, is essential for synapse formation at the neuromuscular junction (NMJ). Like many synaptic proteins, rapsyn turns over rapidly at synapses. However, little is known about molecular mechanisms that govern rapsyn stability. Using a differential mass-spectrometry approach, we identified heat-shock protein 90beta (HSP90beta) as a component in surface AChR clusters. The HSP90beta-AChR interaction required rapsyn and was stimulated by agrin. Inhibition of HSP90beta activity or expression, or disruption of its interaction with rapsyn attenuated agrin-induced formation of AChR clusters in vitro and impaired the development and maintenance of the NMJ in vivo. Finally, we showed that HSP90beta was necessary for rapsyn stabilization and regulated its proteasome-dependent degradation. Together, these results indicate a role of HSP90beta in NMJ development by regulating rapsyn turnover and subsequent AChR cluster formation and maintenance.  相似文献   

14.
15.
16.
Hyperglycemia is the hallmark of diabetes mellitus. Poor glycemic control is correlated with increased cardiovascular morbidity and mortality. High glucose can trigger endothelial cell apoptosis by de-activation of endothelial nitric oxide synthase (eNOS). eNOS was recently demonstrated to be extensively regulated by Akt and heat shock protein 90 (HSP90). Yet, little is known about the molecular mechanisms that regulate eNOS activity during high glucose exposure. The present study was designed to determine the involvement of protein interactions between eNOS and HSP90 in high glucose-induced endothelial cell apoptosis. The protein interaction of eNOS/HSP90 and eNOS/Akt were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to either control-level (5.5 mM) or high-level (33 mM) glucose for different durations (2, 4, 6, and 24 h). The results showed that the protein interactions between eNOS and HSP90 and between eNOS and Akt and the phosphorylation of eNOS were up-regulated by high glucose exposure for 2-4 h. With longer exposures, these effects decreased gradually. During early hours of exposure, the protein interactions of eNOS/HSP90 and eNOS/Akt and the phosphorylation of eNOS were all inhibited by geldanamycin, an HSP90 inhibitor. High glucose-induced endothelial cell apoptosis was also enhanced by geldanamycin and was reversed by NO donors. LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor, inhibited the association of eNOS/Akt and the phosphorylation of eNOS but had no effect on the interaction between eNOS and HSP90 during early hours of exposure. From our results we propose that, in HUVECs, during early phase of high glucose exposure, apoptosis can be prevented by enhancement of eNOS activity through augmentation of the protein interaction between eNOS and HSP90 and recruitment of the activated Akt. With longer exposure, dysregulation of eNOS activity would result in apoptosis. The present study provides a molecular basis for the effects of eNOS in the prevention of endothelial cells apoptosis during early phase of high glucose exposure. These observations may contribute to the understanding of the pathogenesis of vascular complications in diabetes mellitus.  相似文献   

17.
18.
We here investigated the mechanism of self-oligomerization of the 90-kDa heat shock protein (HSP90) molecular chaperone, because it is known that this oligomerization reflects the client-binding activity. The transition temperatures for the self-oligomerization of the full-length forms of human HSP90alpha and HtpG (bacterial HSP90), i.e., 45 and 60 degrees C, respectively, were identical to those for the dissociation of the recombinant N domain (residues 1-400 of human HSP90alpha and residues 1-336 of HtpG in our definition) from the remainder of the molecule. The N domain of human HSP90alpha expressed in Escherichia coli was oligomeric, and the oligomerization activity was localized within residues 311-350, i.e., C-terminally adjacent to the highly immunogenic site (residues 291-304). Particularly, residues 341-350 were critical on oligomerization. On the other hand, residues 289-389 were indispensable for the interaction with the M domain (residues 401-618) of the molecule. Oligomer formation of the N domain was efficiently suppressed by its extension until Lys546, i.e., residues 401-546, which is required for the interaction with the N domain. Among highly conserved amino acids at residues 289-400, Trp297, Pro379, and Phe384 were essential for the interaction with the M domain. With these observations taken together, we propose as the activation mechanism of HSP90 molecular chaperone that heat stress induces the liberation of the oligomerization/client-binding site of residues 311-350 by disrupting the intramolecular interaction between residues 289-389 and 401-546.  相似文献   

19.
The alpha isoform of human 90-kDa heat shock protein (HSP90alpha) is composed of three domains: the N-terminal (residues 1-400); middle (residues 401-615) and C-terminal (residues 621-732). The middle domain is simultaneously associated with the N- and C-terminal domains, and the interaction with the latter mediates the dimeric configuration of HSP90. Besides one in the N-terminal domain, an additional client-binding site exists in the C-terminal domain of HSP90. The aim of the present study is to elucidate the regions within the C-terminal domain responsible for the bindings to the middle domain and to a client protein, and to define the relationship between the two functions. A bacterial two-hybrid system revealed that residues 650-697 of HSP90alpha were essential for the binding to the middle domain. An almost identical region (residues 657-720) was required for the suppression of heat-induced aggregation of citrate synthase, a model client protein. Replacement of either Leu665-Leu666 or Leu671-Leu672 to Ser-Ser within the hydrophobic segment (residues 662-678) of the C-terminal domain caused the loss of bindings to both the middle domain and the client protein. The interaction between the middle and C-terminal domains was also found in human 94-kDa glucose-regulated protein. Moreover, Escherichia coli HtpG, a bacterial HSP90 homologue, formed heterodimeric complexes with HSP90alpha and the 94-kDa glucose-regulated protein through their middle-C-terminal domains. Taken together, it is concluded that the identical region including the hydrophobic segment of the C-terminal domain is essential for both the client binding and dimer formation of the HSP90-family molecular chaperone and that the dimeric configuration appears to be similar in the HSP90-family proteins.  相似文献   

20.
Heat shock protein (HSP) 90 is of interest as an anticancer drug target because of its importance in maintaining the conformation, stability and function of the client proteins involved in signal transduction pathways leading to proliferation, cell cycle progression, and apoptosis. Geldanamycin, a specific antagonist of HSP90, binds directly to HSP90 and promotes proteolytic degradation of client proteins of HSP90. The aim of the present study was to identify novel client proteins of HSP90 and to elucidate HSP90 function through inhibition of HSP90 binding to its client proteins, by using of geldanamycin. We investigated changes in protein profile when apoptosis was induced by exposure to geldanamycin. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), in human neuroblastoma SK-N-SH cells. The vimentin level was found to decrease dramatically by the treatment of geldanamycin. We observed subcellular co-localization of vimentin and HSP90. Physical association of vimentin with HSP90 was detected by an immunoprecipitation assay. The caspase inhibitors, Z-VAD-FMK and Ac-DEVD-CHO, completely abolished geldanamycin-induced cleavage of vimentin. Changes of HSP90 level by antisense treatment or transfection of HSP90-overexpressing vector affected geldanamycin-induced cleavage of vimentin. These results suggest that HSP90 protects vimentin by physical interaction in the geldanamycin-induced apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号