首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction by the T-cell and B-cell antigen receptors and receptors for immunoglobulin Fc regions depends highly on the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). After binding of the ligand, phosphorylation of the two conserved tyrosines of ITAM creates binding sites for downstream signalling molecules and thus enables the initiation of signalling events. Here, we report that the recently found apoptosis receptor, WSL-1/DR3/APO-3/LARD/TRAMP also contains this motif. This may imply that the apoptosis receptor uses ways similar to immunoreceptors in relaying the induction/suppression of the apoptotic signal.  相似文献   

2.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor family that is implicated in apoptosis, proliferation, migration, and inflammation. We describe our findings showing that TWEAK mediated the differentiation of RAW264.7 (RAW) monocyte/macrophage cells into multinuclear, functional osteoclasts. The effect of TWEAK was direct and not mediated by the receptor activator of nuclear factor-kappa B (NF-kappa B) ligand (RANKL) as shown by the use of TWEAK- or RANKL-neutralizing antibodies and by osteoprotegerin, a decoy receptor for RANKL. Recently, fibroblast growth factor-inducible 14 (Fn14) was suggested to be a receptor for TWEAK. We show that the Fn14/TWEAK receptor (TweakR) was not responsible for the osteoclastic effect of TWEAK on RAW cells. Flow cytometry analysis did not reveal the expression of Fn14/TweakR on RAW cells. Moreover, Fn14/TweakR-neutralizing antibodies did not block TWEAK-induced RAW cell differentiation into osteoclasts. This indicated that a second TweakR, TweakR2, exists on RAW cells and is responsible for mediating TWEAK-induced differentiation. We next compared the signaling pathways that are activated by the two receptors. TWEAK binding to TweakR2 activated the NF-kappa B, mitogen-activated protein kinase and c-Jun N-terminal kinase signaling cascades in RAW cells. In contrast, TWEAK binding to Fn14/TweakR activated the NF-kappa B and c-Jun N-terminal kinase pathways but induced only a weak activation of MAPK in HT-29 human colon adenocarcinoma cells expressing endogenous Fn14/TweakR. We propose that the biological effects of TWEAK are mediated by binding to one of at least two distinct receptors that induce differential activation of downstream signaling pathways.  相似文献   

3.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

4.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) engagement with the receptor Fn14 contributes to the fibrotic process of kidney cells in systemic lupus erythematosus. Downregulation of the protein suppressor of cytokine signaling 1 (SOCS1) correlates with amplified production of proinflammatory factors and cell apoptosis, which participate in the pathogenesis of lupus nephritis. To elucidate the potential role of SOCS1 in TWEAK/Fn14 signaling, we determined the SOCS1 levels in primary kidney cells from MRL/MpJ (control strain) or MRL/lpr (lupus-prone) mice. These cells (mesangial cells, glomerular endothelial cells, and tubular epithelial cells) were also evaluated after stimulation with TWEAK (0 to 250 ng/mL). The results showed that the lupus-prone cells exhibited reduced SOCS1 expression. TWEAK induced the production of profibrotic factors (laminin, fibronectin, (CC motif) ligand 20, etc.) in kidney cells from both mouse strains. TWEAK stimulation also decreased both the mRNA and protein levels of SOCS1 in all cells. Moreover, the effect of TWEAK on mesangial cells was amplified by pre-transfection of SOCS1 siRNA but was partly reduced with SOCS1 overexpression by adenoviral delivery. Therefore, TWEAK/Fn14 activation contributes to renal fibrosis in lupus nephritis involving the depression of SOCS1 function.  相似文献   

5.
IFN-gamma inhibits the growth and differentiation of erythroid precursor cells and mediates hemopoietic suppression through mechanisms that are not completely understood. We found that treatment of human erythroid precursor cells with IFN-gamma up-regulates the expression of multiple members of the TNF family, including TRAIL and the recently characterized protein TWEAK. TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14) were expressed by purified erythroblasts at all the stages of maturation. Exposure to recombinant TWEAK or agonist anti-Fn14 Abs was able to inhibit erythroid cell growth and differentiation through caspase activation. Because other members of the TNF family such as TRAIL and CD95 ligand (CD95L) are known to interfere with erythroblast growth and differentiation, we investigated the role of different TNF/TNFR family proteins as potential effectors of IFN-gamma in the immature hemopoietic compartment. Treatment of erythroid precursor cells with agents that blocked either TRAIL, CD95L, or TWEAK activity was partially able to revert the effect of IFN-gamma on erythroid proliferation and differentiation. However, the simultaneous inhibition of TRAIL, TWEAK, and CD95L resulted in a complete abrogation of IFN-gamma inhibitory effects, indicating the requirement of different receptor-mediated signals in IFN-gamma-mediated hemopoietic suppression. These results establish a new role for TWEAK and its receptor in normal and IFN-gamma-mediated regulation of hematopoiesis and show that the effects of IFN-gamma on immature erythroid cells depend on multiple interactions between TNF family members and their receptors.  相似文献   

6.
In the present study, we characterized murine TWEAK and its receptor (Fn14) by generating cDNA transfectants and specific monoclonal antibodies (mAbs). Recombinant murine TWEAK bound to murine Fn14-transfected L5178Y (mFn14/L5178Y) cells and induced cell death. Some anti-human Fn14 mAbs we previously generated strongly cross-reacted with murine Fn14 and induced cell death in mFn14/L5178Y cells. Murine TWEAK-transfected L5178Y cells expressed murine TWEAK on cell surface and secreted functional TWEAK, which were detected by a newly generated anti-murine TWEAK mAb (MTW-1). Although thioglycolate-elicited murine peritoneal macrophages did not express a detectable level of TWEAK on their surface, they secreted functional TWEAK that was cytotoxic against mFn14/L5178Y cells and neutralized by MTW-1. The anti-murine TWEAK and Fn14 mAbs will be useful for further investigating the physiological and pathological functions of TWEAK and Fn14.  相似文献   

7.
Non-coding RNAs (ncRNAs) play critical roles in gene regulation. In eukaryotic cells, ncRNAs are processed and/or degraded by the nuclear exosome, a ribonuclease complex containing catalytic subunits Dis3 and Rrp6. The TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex is a critical exosome cofactor in budding yeast that stimulates the exosome to process/degrade ncRNAs and human TRAMP components have recently been identified. Importantly, mutations in exosome and exosome cofactor genes cause neurodegenerative disease. How the TRAMP complex interacts with other exosome cofactors to orchestrate regulation of the exosome is an open question. To identify novel interactions of the TRAMP exosome cofactor, we performed a high copy suppressor screen of a thermosensitive air1/2 TRAMP mutant. Here, we report that the Nab3 RNA-binding protein of the Nrd1-Nab3-Sen1 (NNS) complex is a potent suppressor of TRAMP mutants. Unlike Nab3, Nrd1 and Sen1 do not suppress TRAMP mutants and Nrd1 binding is not required for Nab3-mediated suppression of TRAMP suggesting an independent role for Nab3. Critically, Nab3 decreases ncRNA levels in TRAMP mutants, Nab3-mediated suppression of air1/2 cells requires the nuclear exosome component, Rrp6, and Nab3 directly binds Rrp6. We extend this analysis to identify a human RNA binding protein, RALY, which shares identity with Nab3 and can suppress TRAMP mutants. These results suggest that Nab3 facilitates TRAMP function by recruiting Rrp6 to ncRNAs for processing/degradation independent of Nrd1. The data raise the intriguing possibility that Nab3 and Nrd1 can function independently to recruit Rrp6 to ncRNA targets, providing combinatorial flexibility in RNA processing.  相似文献   

8.
TNF-like weak inducer of apoptosis, or TWEAK, is a relatively new member of the TNF-ligand superfamily. Ligation of the TWEAK receptor Fn14 by TWEAK has proinflammatory effects on fibroblasts, synoviocytes, and endothelial cells. Several of the TWEAK-inducible cytokines are important in the pathogenesis of kidney diseases; however, whether TWEAK can induce a proinflammatory effect on kidney cells is not known. We found that murine mesangial cells express cell surface TWEAK receptor. TWEAK stimulation of mesangial cells led to a dose-dependent increase in CCL2/MCP-1, CCL5/RANTES, CXCL10/IFN-gamma-induced protein 10 kDa, and CXCL1/KC. The induced levels of chemokines were comparable to those found following mesangial cell exposure to potent proinflammatory stimuli such as TNF-alpha + IL-1beta. CXCL11/interferon-inducible T cell alpha chemoattractant, CXCR5, mucosal addressin cell adhesion molecule-1, and VCAM-1 were up-regulated by TWEAK as well. TWEAK stimulation of mesangial cells resulted in an increase in phosphorylated Ikappa-B, while pretreatment with an Ikappa-B phosphorylation inhibitor significantly blocked chemokine induction, implicating activation of the NF-kappaB signaling pathway in TWEAK-induced chemokine secretion. Importantly, the Fn14-mediated proinflammatory effects of TWEAK on kidney cells were confirmed using mesangial cells derived from Fn14-deficient mice and by injection in vivo of TWEAK into wild-type vs Fn14-deficient mice. Finally, TWEAK-induced chemokine secretion was prevented by treatment with novel murine anti-TWEAK Abs. We conclude that TWEAK induces mesangial cells to secrete proinflammatory chemokines, suggesting a prominent role for TWEAK in the pathogenesis of renal injury. Our results support Ab inhibition of TWEAK as a potential new approach for the treatment of chemokine-dependent inflammatory kidney diseases.  相似文献   

9.
TWEAK (TNF-like weak inducer of apoptosis) is a TNF superfamily member implicated in several mechanisms. Although fibroblast growth factor inducible 14 (Fn14)/TweakR has been reported as its receptor, an as yet unrecognized surface molecule(s) might modulate TWEAK function(s). Thus, we set out to identify TWEAK-binding proteins by screening a combinatorial peptide library. Cyclic peptides containing a consensus motif (WXDDG) bound to TWEAK specifically. These peptides were similar to CD163, a scavenger receptor cysteine-rich domain family member, restricted to the monocyte/macrophage lineage and responsible for the uptake of circulating haptoglobin-hemoglobin (Hp-Hb) complexes. Sequence profile analysis suggested that TWEAK mimicked the CD163 natural ligand (Hp-Hb). Consistently, we show dose-dependent TWEAK binding to CD163 and blockade by an anti-CD163 Ab. In a competition assay, both soluble CD163 and Fn14/TweakR were able to compete off TWEAK binding to coated Fn14/TweakR or CD163, respectively. Flow-cytometry and immunofluorescence assays showed that human monocytes (Fn14/TweakR negative and CD163 positive) bind TWEAK, thus blocking the recognition of CD163 and reducing the activation mediated by a specific mAb in these cells. We demonstrate that monocytes can sequester TWEAK from supernatants, thus preventing tumor cell apoptosis; this effect was reverted by preincubation with the peptide mimicking CD163 or with a mAb anti-CD163, indicating specificity. Finally, we show that recombinant human TWEAK binding to CD163-transfected Chinese hamster ovary cells is inhibited by the presence of either unlabeled TWEAK or the Hp-Hb complex. Together, these data are consistent with the hypothesis that CD163 either acts as a TWEAK scavenger in pathological conditions or serves as an alternate receptor for TWEAK in cells lacking Fn14/TweakR.  相似文献   

10.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

11.
The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) in human malignant ovarian tumors, and test TWEAK’s potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC), we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%). Similarly, 35 out of 41 (85.37%) malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients’ clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α), whereas either TWEAK or TNF-α alone didn’t affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1) production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.  相似文献   

12.
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily that has been shown to induce angiogenesis, apoptosis in tumor cells, and NF-kappaB activation through binding to its receptor, fibroblast growth factor-inducible 14. We have identified TWEAK as an inducer of constitutive NF-kappaB activation by expression cloning, and we report here sequential regulation by TWEAK of two separate signaling cascades for NF-kappaB activation, the NF-kappaB essential modulator-dependent and -independent signaling pathways. Upon TWEAK stimulation, IkappaBalpha is rapidly phosphorylated, generating NF-kappaB DNA-binding complexes containing p50 and RelA in a manner dependent on the canonical IkappaB kinase complex. Unlike TNF-alpha, TWEAK stimulation results in prolonged NF-kappaB activation with a transition of the DNA-binding NF-kappaB components from RelA- to RelB-containing complexes by 8 h, and the latter remained active in binding at least until 24 h post-stimulation. This long lasting activation is accompanied by the proteasome-mediated processing of NF-kappaB2/p100, which does not depend on the NF-kappaB essential modulator but requires IkappaB kinase 1 and functional NF-kappaB-inducing kinase activity. Finally, we show that fibroblast growth factor-inducible 14 with a mutation at its TNF receptor-associated factor (TRAF)-binding site cannot activate NF-kappaB and that TWEAK fails to induce the p100 processing and IkappaBalpha phosphorylation in cells deficient for TRAF2 and TRAF5. Our results thus identify TWEAK as a novel physiological regulator of the non-canonical pathway for NF-kappaB activation.  相似文献   

13.
TWEAK, a member of the TNF family, induces cell death in some tumor cell lines, but also induces proliferation of endothelial cells and angiogenesis. Recently, fibroblast growth factor-inducible 14 (Fn14) has been identified to be a TWEAK receptor, which may be responsible for the proliferation of endothelial cells and angiogenesis. In this study, we investigated the pro-inflammatory effect of TWEAK on human umbilical vein endothelial cells (HUVEC). We demonstrated that TWEAK could not only induce the proliferation and migration but also upregulate the cell surface expression of adhesion molecules such as ICAM-1 and E-selectin, and induce the secretion of chemokines such as IL-8 and MCP-1 in HUVEC. Moreover, by using an anti-Fn14 mAb that blocks the TWEAK/Fn14 interaction, we demonstrated that Fn14 was constitutively expressed on HUVEC and totally mediated the biological effects of TWEAK on HUVEC. These results indicated that TWEAK could induce pro-inflammatory reactions via Fn14 on HUVEC.  相似文献   

14.
15.
The function and distribution of alpha1-adrenergic receptor (AR) subtypes in prostate cancer cells is well characterized. Previous studies have used RNA localization or low-avidity antibodies in tissue or cell lines to determine the alpha1-AR subtype and suggested that the alpha1A-AR is dominant. Two androgen-insensitive, human metastatic cancer cell lines DU145 and PC3 were used as well as the mouse TRAMP C1-C3 primary and clonal cell lines. The density of alpha1-ARs was determined by saturation binding and the distribution of the different alpha1-AR subtypes was examined by competition-binding experiments. In contrast to previous studies, the major alpha1-AR subtype in DU145, PC3 and all of the TRAMP cell lines is the alpha1B-AR. DU145 cells contained 100% of the alpha1B-AR subtype, whereas PC3 cells were composed of 21% alpha1 A-AR and 79% alpha1B-AR. TRAMP cell lines contained between 66% and 79% of the alpha1B-AR with minor fractions of the other two subtypes. Faster doubling time in the TRAMP cell lines correlated with decreasing alpha 1B-AR and increasing alpha1 A- and alpha1D-AR densities. Transfection with EGFP-tagged alpha1B-ARs revealed that localization was mainly intracellular, but the majority of the receptors translocated to the cell surface after extended preincubation (18 hr) with either agonist or antagonist. Localization was confirmed by ligand-binding studies and inositol phosphate assays where prolonged preincubation with either agonist and/or antagonist increased the density and function of alpha 1-ARs, suggesting that the native receptors were mostly intracellular and nonfunctional. Our studies indicate that alpha1B-ARs are the major alpha1-AR subtype expressed in DU145, PC3, and all TRAMP cell lines, but most of the receptor is localized in intracellular compartments in a nonfunctional state, which can be rescued upon prolonged incubation with any ligand.  相似文献   

16.
TNF-related weak inducer of apoptosis (TWEAK) is a member of the TNF ligand family that induces angiogenesis in vivo. The TWEAK receptor (TweakR) is a recently identified member of the TNF receptor (TNFR) superfamily and is expressed on smooth muscle cells (SMCs) and endothelial cells (ECs). In this report we identify the TNF receptor-associated factor (TRAF) family of signal transducers as important components of TweakR-mediated NF-kappa B activation. Coimmunoprecipitation experiments suggested potential interactions between the cytoplasmic tail of TweakR with TRAFs 1, 2, 3, and 5. Dominant negative forms of TRAF2 and TRAF5 substantially inhibited TweakR-mediated NF-kappa B activation, suggesting a role of TRAFs in regulating smooth muscle and endothelial cell function. Using alanine-scanning analysis, we defined a TRAF-binding motif, PIEET, in TweakR that mediates TRAF binding and NF-kappa B activation. Furthermore, TweakR mutations within the TRAF-binding motif abolished TweakR-stimulated SMC migration, revealing a role for TRAFs in TweakR-induced activation events.  相似文献   

17.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily that acts on responsive cells via binding to a cell surface receptor named fibroblast growth factor-inducible 14 (Fn14). TWEAK can regulate numerous cellular responses in vitro and in vivo. Recent studies have indicated that TWEAK and Fn14 are expressed in the central nervous system (CNS), and that in response to a variety of stimuli, including cerebral ischemia, there is an increase in TWEAK and Fn14 expression in perivascular astrocytes, microglia, endothelial cells, and neurons with subsequent increase in the permeability of the blood–brain barrier (BBB) and cell death. Furthermore, there is a growing body of evidence indicating that TWEAK induces the activation of the NF-κB in the CNS with release of proinflammatory cytokines and matrix metalloproteinases. In addition, inhibition of TWEAK activity by either treatment with a Fn14-Fc fusion protein or neutralizing anti-TWEAK antibodies has shown therapeutic efficacy in animal models of ischemic stroke, cerebral edema, and multiple sclerosis.  相似文献   

18.
The human marrow produces approximately 1010 monocytes daily, and this production must be balanced by a similar rate of destruction. Monocytes/macrophages can undergo apoptosis after activating CD4+ T cells, suggesting one mechanism that may contribute to macrophage homeostasis. Previous reports indicate that Fas-Fas ligand interactions are the principle molecules mediating this response. However, D10, an Iak-restricted cloned Th2 line, will similarly induce apoptosis in Ag-presenting macrophages, and D10 cells lack Fas ligand. To confirm that D10 cells kill macrophages through Fas-independent pathways, D10 cells were shown to kill MRL lpr/lpr (Iak) macrophages in an Ag-dependent fashion, indicating additional mechanisms. Recent reports demonstrate that TNF-related apoptosis-inducing ligand (TRAIL), interacting with Apo2, and TNF-like weak inducer of apoptosis (TWEAK), interacting with Apo3, will induce apoptosis in some cells. Using Abs to TRAIL and an Apo3-IgG Fc fusion protein, we demonstrated that D10 cells express both TRAIL and TWEAK. The Apo3 fusion protein, but not human IgG, inhibited D10-induced macrophage apoptosis, as did anti-TRAIL. Further studies demonstrated that AE7, a cloned Th1 line, and splenic T cells express TWEAK, TRAIL, and Fas ligand, and inhibiting these molecules also inhibited macrophage killing. These results indicate that D10 cells induce macrophage apoptosis through TRAIL- and TWEAK-dependent pathways. Because normal T cells also express these molecules, these results support the concept that T cells have multiple pathways by which to induce macrophage apoptosis. These pathways may be important in immune processes such as macrophage homeostasis as well as in down-regulation of immune responses and elimination of macrophages infected with intracellular organisms.  相似文献   

19.
ObjectivesTNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, has been shown to increase cytokine production by rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). In this study, we determined the effect of interaction between TWEAK and its receptor fibroblast growth factor-inducible-14 (Fn14) on cytokine expression in RAFLS.MethodsRAFLS were obtained from surgical synovial specimens and used at passage 5–10. Cytokine protein and mRNA expression were measured with ELISA and real time-PCR, respectively. Apoptotic cells were detected by TUNEL assay. RelB activation was detected by Western blot analysis.ResultsTWEAK inhibited IL-6 production from total synovial cells from RA. TWEAK weakly induced FLS IL-6 and IL-8, but in contrast TWEAK dose-dependently inhibited IL-6 and IL-8 production by TNFα-activated FLS. TWEAK did not induce apoptosis in FLS but inhibited proliferation of TNFα-activated FLS. TWEAK induced RelB activation and suppressed IL-6 mRNA expression in TNFα-activated FLS and both of these phenomenon were abolished by inhibition of new protein synthesis with cycloheximide.ConclusionsTWEAK has a previously unsuspected inhibitory effect on cytokine production by TNFα-activated RAFLS. This observation suggests that the effects of TWEAK on cytokine expression varies with the pro-inflammatory context, and that in TNFα-activated states such as RA TWEAK may have a net inhibitory effect.  相似文献   

20.
The TWEAK receptor Fn14 (TNFRSF12), a member of the TNF Receptor superfamily, can mediate many processes, including apoptosis. Fn14 agonists have therefore been the subject of interest as potential cancer therapeutics. In cell culture experiments, interferon gamma (IFNγ) is typically required for induction of apoptotic activity by either TWEAK or Fn14 agonistic antibodies in most cell lines. We have investigated the mechanism of IFNγ signaling and the role of JAK–STAT signaling in TWEAK/Fn14-mediated tumor cell killing. We found that IFNγ-mediated enhancement of tumor cell killing is JAK–STAT dependent, as JAK inhibitors block IFNγ?dependent TWEAK induced apoptosis. Exposure of tumor cells to IFNγ results in an increase in Fn14 expression on the cell surface, which may be a mechanism by which IFNγ induces sensitivity to TWEAK. In a reciprocal fashion, we observed that IFNγ receptor levels increase in response to TWEAK treatment in WiDr cells. Significantly, we found that TWEAK alone can induce STAT1 phosphorylation in WiDr tumor cells. Moreover, TWEAK induction of tumor cell apoptosis in WiDr cells in the absence of IFNγ is mediated by the JAK–STAT pathway. Correspondingly, we show that treatment of tumor bearing mice with mBIIB036, an Fn14 agonistic antibody, results in STAT1 phosphorylation in the tumors. Notably, the level of STAT1 phosphorylation appears to correlate with the degree of tumor growth inhibition by BIIB036 in vivo. Additionally, in WiDr cells, TWEAK induces a soluble factor, which we have identified as IFNβ, capable of independently inducing STAT1 phosphorylation when transferred to naïve cells. Finally, either IFNα or IFNβ can partially substitute for IFNγ in sensitizing tumor cells to Fn14 agonists. In summary, we show that TWEAK/Fn14 can signal through the JAK–STAT pathway to induce IFNβ, and that the ability of TWEAK to induce tumor cell apoptosis is mediated by JAK-STAT signaling. We also demonstrate that IFNγ enhancement of TWEAK/FN14-mediated tumor cell death is JAK-dependent and may occur by IFNγ-dependent upregulation of Fn14 on tumor cells. These findings may have implications for the appropriately targeted clinical development of Fn14 agonists as anti-cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号