首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Estrogens could play a cardiovascular protective role not only by means of systemic effects but also by means of direct effects on vascular structure and function. We have studied the acute effects and mechanisms of action of 17-beta-estradiol on vascular tone of rabbit isolated carotid artery. 17-Beta-estradiol (10, 30, and 100 microM) elicited concentration-dependent relaxation of 50 mM KCl-induced active tone in male and female rabbit carotid artery. The stereoisomer 17-alpha-estradiol showed lesser relaxant effects in male rabbits. Endothelium removal did not modify relaxation induced by 17-beta-estradiol. The NO synthase inhibitor L-NAME (100 microM) only reduced significantly relaxation produced by 30 microM 17-beta-estradiol. Relaxation was not modified by the estrogen receptor antagonist ICI 182,780 (1 microM), the protein synthesis inhibitor cycloheximide (1 microM), and the selective K(+) channel blockers charybdotoxin (0.1 microM) and glibenclamide (1 microM). CaCl(2) (30 microM -10 mM) induced concentration-dependent contraction in rabbit carotid artery depolarized by 50 mM KCl in Ca(2+) free medium. Preincubation with 17-beta-estradiol (3, 10, 30, or 100 microM) or the L-type Ca(2+) channel blocker nicardipine (0.01, 0.1, 1, or 10 nM) produced concentration-dependent inhibition of CaCl(2)-induced contraction. In conclusion, 17-beta-estradiol induces endothelium-independent relaxation of rabbit carotid artery, which is not mediated by classic estrogen receptor and protein synthesis activation. The relaxant effect is due to inhibition of extracellular Ca(2+) influx to vascular smooth muscle, but activation of K(+) efflux is not involved. Relatively high pharmacological concentrations of estrogen causing relaxation preclude acute vasoactive effects of plasma levels in the carotid circulation.  相似文献   

3.
In the isolated Agama lizard aorta, acetylcholine (ACh; 3 nM-100 microM), noradrenaline (NA; 30 nM-0.3 mM), adrenaline (Adr; 30 nM-300 microM), adenosine 5'-triphosphate (ATP; 30 nM-1 mM), alpha,beta-methylene ATP (alpha,beta-meATP; 10 nM-10 microM), beta,gamma-methylene ATP (beta,gamma-meATP; 0.1-300 microM), 2-methylthio ATP (2-meSATP; 30 nM-30 microM) and high concentrations of uridine triphosphate (UTP; 1 microM-1 mM), all produced constriction. The P2 receptor antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 30 microM), suramin (0.1 mM) and Reactive blue 2 (30 microM) all raised vascular tone and could not be utilized and the antagonist 2'-O-(trinitrophenyl) ATP (TNP-ATP; 0.1 microM) had no effect on responses to the ATP analogues. alpha,beta-MeATP (3 microMx3) desensitised responses to alpha,beta-meATP (10 microM) and beta,gamma-meATP (0.3 mM), but not to ATP (0.3 mM) or 2-meSATP (30 microM). On pre-constricted aorta (EC50 concentration of either ACh or Adr), adenosine (1 microM-1 mM), the A1-selective agonist N6-cyclopentyl adenosine (CPA; 1-300 microM) [but not the A2- and A3-selective agonists CGS 21680 and IB-MECA respectively (both up to 30 microM)] and sodium nitroprusside (10 nM-100 microM) produced vasodilatation. Adenosine vasodilatation was antagonised by 8-p-sulfophenyl-theophylline (8-pSPT; 30 microM) but not by N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.1 mM). ATP (up to 0.3 mM), 2-meSATP (up to 10 microM) and UTP (up to 1 mM) were not vasodilators. In summary, A1 receptors mediating relaxation and excitatory P2X1 receptors were identified in the smooth muscle of the lizard aorta. However, in contrast to mammalian aorta, P2Y receptors on endothelial cells mediating vasodilatation via nitric oxide do not appear to be present.  相似文献   

4.
The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation.  相似文献   

5.
The aim of the present study was to analyze the mechanisms involved in the relaxation induced by 1 microM acetylcholine (ACh) in aortic segments from fetal rats at term precontracted with 3 microM prostaglandin F2alpha (PGF2alpha) and incubated with 1 microM indomethacin. The endothelium-dependent relaxation caused by ACh was reduced by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 0.1 mM), such an effect was reversed by 0.1 mM L-arginine (L-Arg). After precontraction of segments with 50 mM KCl the relaxant response to ACh was smaller than that after precontraction with PGF2alpha; this reduction was increased by L-NMMA, whereas L-NMMA plus L-Arg potentiated the relaxation. Thiopentone sodium (0. 1 mM), ouabain (10 microM), tetraethylammonium (TEA, 0.5 mM) and apamin (1 microM), inhibitors of cytochrome P450 monooxygenases, Na+ pump, Ca2+-activated (KCa) and small-conductance (SKCa) K+ channels, respectively, reduced the relaxation to ACh, which was unaffected by charybdotoxin (0.1 microM) and glibenclamide (1 microM), inhibitors of large-conductance BKCa and ATP-sensitive K+ channels. The L-NMMA/indomethacin-resistant relaxation to ACh was markedly reduced by thiopentone sodium, and similarly decreased by either ouabain or TEA. The endothelium-independent relaxation induced by exogenous NO (10 microM) in segments precontracted with PGF2alpha was unaltered by ouabain, glibenclamide, TEA and after precontraction with 50 mM KCl, and potentiated by L-NMMA. The potentiation of NO responses by L-NMMA was also observed in segments precontracted with KCl. These results suggest that ACh relaxes the fetal rat aorta by endothelial release of both NO and endothelium-derived hyperpolarizing factor (EDHF), a metabolite derived from cytochrome P450 monooxygenases, that hyperpolarizes smooth muscle cells by activation of KCa, essentially SKCa channels, and Na+ pump. It seems that when the effect of EDHF is abolished, the formation of NO could be increased.  相似文献   

6.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

7.
Huang MH  So EC  Liu YC  Wu SN 《Steroids》2006,71(2):129-140
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.  相似文献   

8.
Nitrovasodilators-sodium nitroprusside (SNP; 10(-9)-10(-4) M) and 3-morpholino-sydnonimine (SIN-1; 10(-9)-10(-4) M) produced concentration-dependent relaxation of the fourth generation sheep pulmonary artery, preconstricted with 5-hydroxytryptamine (1 microM). Oxidizing agents [oxidized glutathione (GSSG, 1 mM) and CuSO4 (5 and 20 microM)] and reducing agents [dithiothreitol (DTT, 0.1 mM), ascorbic acid (1 mM) and reduced glutathione (GSH, 1 mM)] caused opposite effects on nitric oxide (NO)-induced vasodilation in the artery. Ascorbic acid and GSH potentiated the NO responses, while GSSG and CuSO4 inhibited relaxation caused by the nitrovasodilators. DTT, however, reduced the relaxant potency and efficacy of SNP and SIN-1. Pretreatment of the pulmonary artery strips with DTT (0.1 mM) inhibited SNP (10 microM)-induced Na(+)-K(+)-ATPase activity, while ascorbic acid (1 mM) and GSH (1 mM) had no effect either on basal or SNP (10 microM)-stimulated 86Rb uptake, an index of Na(+)-K(+)-ATPase activity, in ovine pulmonary artery. The results suggest that reducing agents like ascorbic acid may have beneficial effect in improving the vascular function under oxidative stress.  相似文献   

9.
The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.  相似文献   

10.
Exercise training increases acetylcholine-induced pulmonary vasorelaxation in pigs with coronary occlusion. The present study tested the hypothesis that chronic exercise training enhances endothelium-mediated vasorelaxation in pulmonary arteries from normal pigs. Yucatan miniswine exercised for 16 wk on a treadmill (Ex); control pigs (Sed) remained in pens. Pulmonary artery rings (2- to 3-mm OD) were studied using standard isometric techniques. Contractile responses to 80 mM KCl and norepinephrine (NE) were determined. Vessels were constricted with levels of NE that resulted in half-maximal contraction to examine endothelium-dependent relaxation to ACh and endothelium-independent relaxation to sodium nitroprusside in the presence and absence of nitric oxide synthase inhibition, cyclooxygenase inhibition, and endothelial denudation. Arteries from Ex pigs developed increased contraction to 80 mM KCl, but the response to NE did not differ between groups. Endothelium-dependent and endothelium-independent responses did not differ between Sed and Ex in the presence or absence of pharmacological inhibitors or denudation. We conclude that chronic exercise training does not alter endothelium-dependent or endothelium-independent vasorelaxation responses of pulmonary arteries from normal pigs.  相似文献   

11.

Background and Aims

Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals.

Methods and Results

In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer.

Conclusions

Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.  相似文献   

12.
This study examined vascular function and the role of superoxide in mice that chronically express human renin (R+) and human angiotensinogen (A+). Responses of aortas from R+/A+ mice and from their normotensive littermates (RA- mice) were examined in vitro. Endothelium-dependent relaxation to acetylcholine was impaired in vessels from R+/A+ mice (e.g., maximal relaxation to 100 microM acetylcholine was 45 +/- 5% and 65 +/- 3% in R+/A+ and RA- mice, respectively; P < 0.05). Relaxation was also impaired to the endothelium-independent dilators authentic nitric oxide and nitroprusside in vessels from R+/A+ mice. Maximal vasorelaxation to the endothelium-independent, non-nitric oxide dilator papaverine was similar in R+/A+ and RA- mice. Incubation of vessels from R+/A+ mice with Tiron (1 mM), a superoxide scavenger, improved relaxation to acetylcholine, nitric oxide, and nitroprusside. In contrast, incubation with diethyldithiocarbamate (1 mM), an inhibitor of copper-containing SODs, reduced acetylcholine- and nitroprusside-induced relaxation in vessels from both R+/A+ and RA- mice. Basal superoxide levels, measured with lucigenin-enhanced chemiluminescence (5 microM lucigenin) and hydroethidine-based fluorescent confocal microscopy, were higher in vessels from R+/A+ mice and were Tiron and polyethylene glycol-SOD sensitive. These results suggest that increased superoxide contributes to impaired nitric oxide-mediated relaxation in this genetic model of chronic angiotensin II-dependent hypertension.  相似文献   

13.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2008,82(1-2):91-98
1, 5-Dihydroxy-2, 3-dimethoxy-xanthone (HM-5) is one of the naturally-occurring xanthones of a Tibetan medicinal herb Halenia elliptica. Recently, it has been shown that HM-5 is one of the phase I metabolites of 1-hydroxy-2, 3, 5-trimethoxy-xanthone (HM-1), the major active component of H. elliptica with potent vasorelaxant actions. This study investigated the vasorelaxant effect of HM-5 and its mechanism(s). HM-5 (0.35-21.9 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 4.40+/-1.08 microM. Unlike HM-1, the effect of HM-5 was endothelial-independent such that removal of the endothelium did not affect its vasodilator potency. Nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME, 100 microM), the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM) did not affect the vasodilatory effects of HM-5, thus confirming the non-involvement of endothelium related mechanisms. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-5 was inhibited by a potassium channel blocker, TEA (10 mM), and 4-aminopyridine (4-AP, a K(v) blocker; 1 mM) but not by other K+ channel blockers such as iberiotoxin (100 nM), barium chloride (100 microM) and glibenclamide (10 microM). The involvement of Ca2+ channel was studied in artery rings pre-incubated with Ca2+-free buffer (intact endothelium or endothelium-denuded) and primed with 1 microM 5-HT or 60 mM KCl prior to the addition of CaCl2 to elicit contraction. In the 5-HT-primed preparations, HM-5 (34.7 microM) significantly inhibited the CaCl(2)-induced vasoconstriction (89.9% inhibition in intact endothelium artery rings; 83.3% inhibition in endothelium-denuded rings). In the KCl-primed preparations, HM-5 (34.7 microM) produced a 34% inhibition in endothelium-denuded rings. The same concentration of HM-5 inhibited (by 62.3%) the contractile response to 10 microM phorbol 12, 13-diacetate (PDA), a protein kinase C activator, in Ca2+-free solutions. Taken together, this study showed that the mechanisms of the vasorelaxant effects of HM-5 were distinctly different from those of its parent drug HM-1. The vasorelaxant effect of HM-5 was mediated through opening of potassium channel (4-AP) and altering intracellular calcium by partial inhibition of Ca2+ influx through L-type voltage-operated Ca2+ channels and intracellular Ca2+ stores.  相似文献   

14.
Experiments were undertaken to investigate the existence of inhibitory nonadrenergic, noncholinergic (i-NANC) nerve activity by using in vitro functional and immunohistochemical techniques in rat main pulmonary arterial rings. Vessels precontracted with phenylephrine (3 microM) relaxed in response to electrical field stimulation (EFS) (50 V, 0.2 ms, 0.1-10 Hz for 5 s) in the presence of atropine (1 microM) and guanethidine (1 microM). Tetrodotoxin (0.3 microM) abolished this response, indicating that it is neuronal in origin. l-NAME (30 microM), methylene blue (10 microM), and removal of endothelium significantly reduced the EFS-induced relaxations. The inhibitory action of l-NAME was completely reversed by l-arginine (1 mM) but not by d-arginine (1 mM). Moreover l-arginine alone potentiated the magnitude of the relaxations elicited by EFS. On the other hand, immunohistochemical work clearly demonstrated the existence of neuronal nitric oxide synthase in the pulmonary artery vessel wall. All these results are consistent with the suggestion that nitric oxide is the likely mediator of this vasodilatation. However, the incomplete blockade of the responses by l-NAME gives evidence of an additional inhibitory NANC neurotransmitter(s) mediating the residual relaxation, which requires further experiments to clarify its nature.  相似文献   

15.
We hypothesized that exercise training would lead to enhanced endothelium-dependent vasodilation in porcine pulmonary arteries. Pulmonary artery rings (2- to 3-mm OD) were obtained from female Yucatan miniature swine with surgically induced coronary artery occlusion (ameroid occluder). Exercise training was performed for 16 wk, and vasomotor responses were studied by using standard isometric techniques. Contractile responses to 80 mM KCl, isosmotic KCl (10-100 mM), and norepinephrine (10(-8) to 10(-4) M) did not differ between sedentary (Sed) and exercise-trained (Ex) pigs. Relaxation was assessed to endothelium-dependent and endothelium-independent vasodilators after norepinephrine contraction. Pulmonary arteries of Ex pigs exhibited greater maximal relaxation to ACh (61.9 +/- 3.5%) than did those of Sed pigs (52.3 +/- 3.9%; P < 0.05). Endothelium-independent relaxation to sodium nitroprusside did not differ. Inhibition of nitric oxide synthase significantly decreased acetylcholine-induced relaxation, with greater inhibition in arteries from Ex pigs (P < 0.05). Inhibition of cyclooxygenase enhanced relaxation to acetylcholine in arteries from Sed pigs. We conclude that exercise training enhances endothelium-dependent (ACh-mediated) vasorelaxation in pulmonary arteries by mechanisms of increased reliance on nitric oxide and reduced production of a prostanoid constrictor.  相似文献   

16.
In this study, the presence of GPRC6A receptors in rat mesenteric artery was investigated. In artery homogenates, GPRC6A mRNA was detected and Western blotting showed the presence of GPRC6A protein. Immunohistochemical studies revealed GPRC6A in both endothelial cells and myocytes. In whole vessel segments, the GPRC6A activators, 300 microM l-ornithine and 100 microM Al(3+), induced endothelium-dependent myocyte hyperpolarizations sensitive to 10 microM TRAM-34, a blocker of intermediate conductance, Ca(2+)-sensitive K(+) channels (IK(Ca)). Activation of IK(Ca) with calindol (300 nM; a positive allosteric Ca(2+)-sensing receptor - CaR - modulator) was inhibited by 500 nM ouabain (inhibition of rat type 2 and type 3 Na(+)/K(+)-ATPases) but unaffected by 30 microM Ba(2+) (blockade of inwardly rectifying K(+) channels). Neither l-ornithine nor Al(3+) activated CaRs heterologously expressed in CHO or HEK293 cells. In the presence of 300 microM l-ornithine or 100 microM Al(3+), myocyte hyperpolarizations to calindol were potentiated whereas this potentiation and hyperpolarizations to l-ornithine were lost following incubation with an anti-GPRC6A antibody. It is concluded that GPRC6A receptors are present on mesenteric artery endothelial cells and myocytes and that their activation selectively opens IK(Ca) channels. This triggers a ouabain-sensitive myocyte hyperpolarization suggesting a close functional relationship between GPRC6A, the IK(Ca) channel and type 2 and/or type 3 Na(+)/K(+)-ATPases.  相似文献   

17.
The present study examines possible mechanisms by which the flavonoid isokaempferide (IKPF; 5,7,4'-trihydroxy-3-methoxyflavone) from Amburana cearensis, a Brazilian medicinal plant popularly used as bronchodilator, induces relaxation of guinea-pig isolated trachea. In the trachea (with intact epithelium) contracted by carbachol, IKPF (1-1000 microM) caused a graded relaxation, and the epithelium removal increased the sensitivity of the airway smooth muscle to IKPF (EC50, in intact tissue: 77.4 [54.8-109.2] microM; in denuded epithelium: 15.0 [11.3-20.1] microM). The IKPF-induced relaxation was inhibited in 41% by the nitric oxide (NO) synthase inhibitor L-NAME (100 microM); in 31% and 50% by the soluble guanylate cyclase (sGC) inhibitor ODQ (3 and 33 microM); by propranolol (31%) and also by capsaicin (37%). In the trachea pre-contracted by 40 mM KCl the pre-incubation with glibenclamide (33 microM) or iberiotoxin (IbTX, 0.1 microM), selective K(+) channel inhibitors, inhibited the IKPF-induced relaxation by 39% and 38%, respectively. On the other hand, 4-aminopyridine (100 microM), a nonselective K(+) channel antagonist, did not significantly influence the effect of IKPF, while IbTX induced a rightward displacement of the IKPF concentration-response curve. However, in muscle pre-contracted with 120 mM KCl the relaxant effect of IKPF was significantly reduced and not affected by glibenclamide. In conclusion, these results indicate a direct and epithelium-independent relaxant effect of IKPF on smooth muscle fibers. Although this IKPF relaxant action seems to be multi-mediated, it occurs via both Ca(2+) and ATP-sensitive K(+) channels, but some other possible mechanisms unrelated to K(+) channels cannot be excluded.  相似文献   

18.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2007,81(12):1016-1023
1-Hydroxy-2, 3, 5-trimethoxyxanthone (HM-1) is a xanthone isolated from Halenia elliptica, a Tibetan medicinal herb. HM-1 (0.33-42.1 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 1.67+/-0.27 microM. Removal of the endothelium significantly affected the vasodilator potency of HM-1, resulting in 46% decrease in E(max) value. The endothelium-dependent effects of HM-1 was confirmed when its vasorelaxant effect was inhibited after addition of nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (100 microM) or the soluble guanylate cyclase inhibitor 1H-[1, 2, 4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM). Atropine (100 nM), flurbiprofen (10 microM), propranolol (100 microM), pyrilamine (10 microM), cimetidine (10 microM) and SQ22536 (100 microM) had no effect on the vasorelaxant activity of HM-1 indicated the non-involvement of other receptor/enzyme systems. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-1 was unaffected by potassium channel blockers such as tetraethylammonium (10 mM), iberiotoxin (100 nM), barium chloride (100 microM) and 4-aminopyridine (1 mM). The involvement of Ca(2+) channel in 5-HT-primed artery ring preparations incubated with Ca(2+)-free buffer was confirmed when HM-1 (9.93 microM) partially abolished the CaCl(2)-induced vasoconstriction (87% inhibition in intact-endothelium artery rings; 50% inhibition in endothelium-denuded rings). In the KCl-primed preparations incubated with Ca(2+)-free buffer, HM-1 (9.93 microM) produced a 27.3% inhibition in endothelium-denuded rings. HM-1 (3.31-33.1 microM) had minimal relaxant effects (14.4%-20.3%) on the contractile response generated by 10 microM phorbol 12,13-diacetate (PDA) in Ca(2+)-free solutions, suggesting minimal effects on intracellular Ca(2+) mechanisms. These findings suggest the vasodilator action of HM-1 involved both an endothelium-dependent mechanism involving NO and an endothelium-independent mechanism by inhibiting Ca(2+) influx through L-type voltage-operated Ca(2+) channels; a minor contribution to the effects of HM-1 may be related to inhibition of the protein kinase C-mediated release of intracellular Ca(2+) stores.  相似文献   

19.
The goal of this study was to determine the effects of peroxynitrite (ONOO-) on smooth muscle membrane potential and vasomotor function in rabbit carotid arteries. ONOO- is known to affect vascular tone by several mechanisms, including effects on K+ channels. Xanthine (X, 0.1 mM), xanthine oxidase (XO, 0.01 U/ml), and a low concentration of sodium nitroprusside (SNP, 10 nM) were used to generate ONOO-. In the common carotid artery, X and XO (X/XO) in the presence of SNP tended to increase tension. In contrast, in the internal carotid artery, X/XO in the presence of SNP transiently hyperpolarized the membrane (-8.5 +/- 1.8 mV, mean +/- SE) and decreased tension (by 85 +/- 5.6%). In internal carotid arteries, in the absence of SNP, X/XO did not hyperpolarize the membrane and produced much less relaxation (by 23 +/- 5.6%) than X/XO and SNP. Ebselen (50 microM) inhibited both hyperpolarization and relaxation to X/XO and SNP, and uric acid (100 microM) inhibited relaxation. Glibenclamide (1 microM) abolished hyperpolarization and inhibited relaxation during X/XO and SNP. Charybdotoxin (100 nM) or tetraethylammonium (1 mM) did not affect hyperpolarization or relaxation, respectively. These results suggest that ONOO- hyperpolarizes and relaxes smooth muscle in rabbit internal carotid artery but not in common carotid artery through activation of K(ATP) channels.  相似文献   

20.
The present experiments were designed to investigate the effects of omeprazole, a H(+)-K+ ATPase inhibitor, on corporal smooth muscle tone in vitro. All spontaneous contractile activity in the corpus cavernosum was blocked following omeprazole (0.1 mM-1 mM) administration. However atropine (1 microM), Nw-nitro L-arginine methyl ester (L-NAME, 30 microM) or indomethacin (10 microM) did not affect the spontaneous contraction. Omeprazole (10 microM-1 mM) concentration-dependently induced relaxation in corporal smooth muscle precontracted with 10 microM phenylephrine or 80 mM KCl. Pretreatment of corporal tissue with L-NAME (30 microM), indomethacin (10 microM), ammonium chloride (7.5 mM), sodium acetate (7.5 mM), tetraethyl ammonium chloride (0.5 mM) or glibenclamide (1 microM) had no effect on the omeprazole induced relaxant responses. Nimodipine, an L-type Ca++ channel blocker, relaxed corporal strips precontracted with 80 mM KCl. Collectively, these results indicate that the inhibition of spontaneous contraction and the relaxation of precontracted corporal smooth muscle by omeprazole is probably mediated by the blockade of calcium channels. Further work is needed to determine the cellular mechanism(s) of action by which omeprazole acts on corpus cavernosum smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号