首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Converging evidence that G-CSF, the hemopoietic growth factor of the myeloid lineage, also exerts anti-inflammatory and pro-Th2 effects, prompted us to evaluate its direct therapeutic potential in autoimmune diseases. Here we report a novel activity of G-CSF in experimental allergic encephalomyelitis, a murine model for multiple sclerosis, driven by Th1-oriented autoaggressive cells. A short 7-day treatment with G-CSF, initiated at the onset of clinical signs, provided durable protection from experimental autoimmune encephalomyelitis. G-CSF-treated mice displayed limited demyelination, reduced recruitment of T cells to the CNS, and very discrete autoimmune inflammation, as well as barely detectable CNS mRNA levels of cytokines and chemokines. In the periphery, G-CSF treatment triggered an imbalance in the production by macrophages as well as autoreactive splenocytes of macrophage inflammatory protein-1alpha and monocyte chemoattractant protein-1, the prototypical pro-Th1 and pro-Th2 CC chemokines, respectively. This chemokine imbalance was associated with an immune deviation of the autoreactive response, with reduced IFN-gamma and increased IL-4 and TGF-beta1 levels. Moreover, G-CSF limited the production of TNF-alpha, a cytokine also associated with early CNS infiltration and neurological deficit. These findings support the potential application of G-CSF in the treatment of human autoimmune diseases such as multiple sclerosis, taking advantage of the wide clinical favorable experience with this molecule.  相似文献   

2.
Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases.  相似文献   

3.
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood–brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.  相似文献   

4.
Multiple sclerosis (MS) is no longer considered to be simply an autoimmune disease. In addition to inflammation and demyelination, axonal injury and neuronal loss underlie the accumulation of disability and the disease progression. Specific treatment strategies should thus aim to act within the central nervous system (CNS) by interfering with both neuroinflammation and neurodegeneration. Specific treatment strategies to autoimmune neurological disorders should aim to act within the CNS by interfering with both neuroinflammation and neurodegeneration. The cumulative effect of Glatiramer acetate (GA; Copaxone(R), Copolymer 1), an approved drug for the treatment of MS, reviewed herewith, draws a direct linkage between anti-inflammatory immunomodulation, neuroprotection, neurogenesis, and therapeutic activity in the CNS. GA treatment augmented the three processes characteristic of neurogenesis, namely, neuronal progenitor cell proliferation, migration, and differentiation. The newborn neurons manifested massive migration through exciting and dormant migratory pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype, thus, counteracting the neurodegenerative course of disease. The plausible mechanism underlying this multifactorial effect is the induction of GA-reactive T cells in the periphery and their infiltration into the CNS, where they release immunomodulatory cytokines and neurotrophic factors in the injury site.  相似文献   

5.
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system. However, studies of MS and the animal model, experimental autoimmune encephalomyelitis (EAE), indicate that neuronal pathology is the principle cause of clinical disability. Thus, there is need to develop new therapeutic strategies that not only address immunomodulation but also neuroprotection. Here we show that the combination therapy of Glatiramer acetate (GA), an immunomodulatory MS therapeutic, and the neuroprotectant epigallocatechin-3-gallate (EGCG), the main phenol in green tea, have synergistic protective effects in vitro and in the EAE model. EGCG and GA together led to increased protection from glutamate- and TRAIL-induced neuronal cell death in vitro. EGCG combined with GA induced regeneration of hippocampal axons in an outgrowth assay. The combined application of EGCG and GA did not result in unexpected adverse events in vivo. Neuroprotective and neuroregenerative effects could be translated in the in vivo model, where combination treatment with EGCG and GA significantly delayed disease onset, strongly reduced clinical severity, even after onset of symptoms and reduced inflammatory infiltrates. These results illustrate the promise of combining neuroprotective and anti-inflammatory treatments and strengthen the prospects of EGCG as an adjunct therapy for neuroinflammatory and neurodegenerative diseases.  相似文献   

6.
Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.  相似文献   

7.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that is characterised by an autoimmune attack on components of the myelin sheath and axons leading to neurological disability. Although long-approved current treatments for MS have so far only targeted immune components of the disease in a non-specific manner, the efficacy of these immunomodulatory treatments are limited given that they are only immunosuppressive and/ or immunoregulatory and do not prevent long-term disease progression. As such, there is a clear need for more effective therapies that are capable of targeting other aspects of the disease including neurodegeneration, demyelination and the underlying causes of the autoimmune state. Emerging data suggest that hematopoietic, mesenchymal and neural stem cells have the promise to restore self-tolerance, to provide in situ immunomodulation and neuroprotection as well as to promote regeneration. This review will summarise burgeoning experimental and clinical evidence supporting the application of these stem cell populations for the treatment of MS.  相似文献   

8.
Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.  相似文献   

9.
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded RNAs about 21 nucleotides in length. miRNAs have been shown to regulate gene expression and thus influence a wide range of physiological and pathological processes. Moreover, they are detected in a variety of sources, including tissues, serum, and other body fluids, such as saliva. The role of miRNAs is evident in various malignant and nonmalignant diseases, and there is accumulating evidence also for an important role of miRNAs in systemic rheumatic diseases. Abnormal expression of miRNAs has been reported in autoimmune diseases, mainly in systemic lupus erythematosus and rheumatoid arthritis. miRNAs can be aberrantly expressed even in the different stages of disease progression, allowing miRNAs to be important biomarkers, to help understand the pathogenesis of the disease, and to monitor disease activity and effects of treatment. Different groups have demonstrated a link between miRNA expression and disease activity, as in the case of renal flares in lupus patients. Moreover, miRNAs are emerging as potential targets for new therapeutic strategies of autoimmune disorders. Taken together, recent data demonstrate that miRNAs can influence mechanisms involved in the pathogenesis, relapse, and specific organ involvement of autoimmune diseases. The ultimate goal is the identification of a miRNA target or targets that could be manipulated through specific therapies, aiming at activation or inhibition of specific miRNAs responsible for the development of disease.  相似文献   

10.
Two hematopoietic cytokines are currently gaining increasing attention within neurological research. Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) have long been known for their ability to induce the proliferation of certain populations of hematopoietic lineage cells. However, it has recently been found that EPO, G-CSF, and their respective receptors are also expressed in the human central nervous system (CNS) and may be an important part of the brain's endogenous system of protection. Both hematopoietic cytokines have been shown to have neuroprotective potential in a variety of animal disease models both in vitro and in vivo, through the inhibition of apoptosis, induction of angiogenesis, exertion of anti-inflammatory and neurotrophic effects, as well as by the enhancement of neurogenesis. EPO and G-CSF have been extensively studied in the context of hematological disorders and have recently been successfully applied in the first clinical trials in stroke patients. Intravenous high-dose EPO therapy was associated with an improvement in the clinical outcome and preclinical studies with intravenous high-dose G-CSF therapy have clearly shown that it has considerable neuroprotective potential in the acute, as well as in the chronic phase of stroke. In this review, the current knowledge of the neuroprotective mechanisms of EPO and G-CSF is summarized with regard to in vitro and in vivo data. Focus is placed on the role of EPO in neurological disease models with an emphasis on its influence on functional outcome. New experimental results are assessed in detail and correlated with the findings of recent clinical studies.  相似文献   

11.
Carnosine (β-alanyl-L-histidine) is a natural dipeptide widely and abundantly distributed in excitable tissues of several animal tissues. Although its physiological role has not been completely understood yet, many beneficial actions have been attributed to carnosine, such as being an antioxidant, antiglycating and ion-chelating agent, a wound healing promoter and a free-radical scavenger. The role of carnosine in the neuroprotection of oxidative stress-driven disorders has been reviewed. The effects of carnosine have been extensively studied both in vivo and in vitro models of cerebral damages, such as neurodegenerative disorders and hypoxia-ischemia injuries. Beside the classical sacrificial agent, carnosine has been reevaluated as a molecular chaperon and an inducer of antioxidant systems in oxidative stress conditions. Thus, beneficial effects on most of the common biochemical events that characterize neurological disorders make carnosine a very promising molecule among all the endogenous compounds in the treatment and/or prevention of oxidative driven diseases.  相似文献   

12.
Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.  相似文献   

13.
Granulocyte colony-stimulating factor (G-CSF) has been used for the treatment of neutropenia in hematologic disorders. The neuroprotective effects of G-CSF were reported in neurological disease models. In the present study, we examined whether G-CSF can protect dopaminergic neurons against MPTP-induced cell death in a mouse model of Parkinson's disease. Mice of one group were injected intraperitoneally with MPTP for five consecutive days, those of another group with MPTP and intraperitoneal G-CSF at 2 days and 1 day before the first MPTP injection, and 30 min before each MPTP injection, while control mice received saline injections. Immunohistochemistry, western blotting analysis, and HPLC were performed to evaluate damage of substantia nigra dopaminergic neurons and expression of Bcl-2 and Bax protein. MPTP induced dopaminergic cell death in the substantia nigra. G-CSF significantly prevented MPTP-induced loss of tyrosine hydroxylase-positive neurons (p < 0.05), increased Bcl-2 protein and decreased Bax protein expression. Our findings indicate that G-CSF provides neuroprotection against MPTP-induced cell death and this effect is mediated by increasing Bcl-2 expression levels and decreasing Bax expression levels in C57BL/6 mice.  相似文献   

14.
Therapeutic role of sirtuins in neurodegenerative disease   总被引:1,自引:0,他引:1  
The sirtuins are a family of enzymes which control diverse and vital cellular functions, including metabolism and aging. Manipulations of sirtuin activities cause activation of anti-apoptotic, anti-inflammatory, anti-stress responses, and the modulation of an aggregation of proteins involved in neurodegenerative disorders. Recently, sirtuins were found to be disease-modifiers in various models of neurodegeneration. However, almost in all instances, the exact mechanisms of neuroprotection remain elusive. Nevertheless, the manipulation of sirtuin activities is appealing as a novel therapeutic strategy for the treatment of currently fatal human disorders such as Alzheimer's and Parkinson's diseases. Here, we review current data which support the putative therapeutic roles of sirtuin in aging and in neurodegenerative diseases and the feasibility of the development of sirtuin-based therapies.  相似文献   

15.
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.  相似文献   

16.
The development of the central nervous system (CNS) relies on precisely orchestrated gene expression regulation. Dysregulation of both genetic and environmental factors can affect proper CNS development and results in neurological diseases. Recent studies have shown that similar to protein coding genes, noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. In this review, we have highlighted discoveries of functions of noncoding RNAs, in particular microRNAs and long noncoding RNAs, in neural development and neurological diseases. Emerging evidence has shown that microRNAs play an essential role in many aspects of neural development, such as proliferation of neural stem cells and progenitors, neuronal differentiation, maturation, and synaptogenesis. Misregulation of microRNAs is associated with some mental disorders and neurodegeneration diseases. In addition, long noncoding RNAs are found to play a role in neural development by regulating the expression of protein coding genes. Therefore, examining noncoding RNA-mediated gene regulations has revealed novel mechanisms of neural development and provided new insights into the etiology of human neurological diseases.  相似文献   

17.
Wnt signaling plays a key role in several physiological and pathological aspects. Even if Wnt signal was first described more than 20 years ago, its role in systemic effects, such as angiogenesis and vascular disorders, bone biology, autoimmune diseases, neurological diseases, and neoplastic disorders, was only recently emerged through the use of animal and in vitro models. Moreover, Wnt signaling inhibitors, such as DKK‐1, may be advantageously considered targets for the treatment of several diseases, including osteoporosis, vascular diseases, inflammatory diseases, neurological diseases, and cancer. Nevertheless, further studies are required to provide a complete understanding of this complex signaling pathway, and especially of its role in human diseases, considering the possible advantageous effects of Wnt signaling inhibitors on the progression of disease conditions. J. Cell. Physiol. 228: 1428–1432, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.  相似文献   

19.
酸性鞘磷脂酶/神经酰胺通路可介导细胞凋亡、炎症和自噬等多种细胞活动,与心脑血管疾病、代谢类疾病、肺部和肝部疾病以及 神经系统疾病等多种疾病的发生、发展密切相关。酸性鞘磷脂酶现已成为多种疾病的临床生物标记物和潜在的治疗靶点。综述酸性鞘磷脂 酶/神经酰胺通路在各种疾病中的生物学功能和作用机制最新研究进展,旨在为相关疾病的治疗提供新思路。  相似文献   

20.
B lymphocyte stimulator (BLyS), a member of the tumor necrosis factor superfamily, is an important regulator of B cell homeostasis. In BLyS-deficient mice, B cell development is severely perturbed. On the other hand, mice transgenic for BLyS developed autoimmune disorders, such as increased germinal center formation, production of autoantibodies, and Ig deposition in kidneys. The overexpression of BLyS was found in some human autoimmune diseases. These findings suggest that BLyS has a crucial role in the humoral immune response and may be a therapeutic target for some human autoimmune diseases. To construct and express the therapeutic vaccine BLyS, we coupled a foreign immunodominant T-helper epitope to the N terminus of BLyS (named recombinant BLyS mutant, rBLySM) and expressed rBLySM in Escherichia coli. We have developed a purification process of rBLySM from inclusion bodies. A step-down urea concentration strategy was applied to the rBLySM renaturation process. By this strategy, a stable yield of 4.5mg purified rBLySM per gram of cell paste could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号