首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

2.
A comparative analysis is presented of 24 known amino acid sequences of RNA-dependent RNA polymerases of positive strand RNA viruses infecting animals, plants and bacteria. Using a newly proposed methodology of group alignment for weakly similar sequences, evolutionary conserved fragments of all these proteins were unambiguously aligned. A unique pattern (consensus) of 7 invariant amino acid residues was revealed which is absent from the sequences of other RNA and DNA polymerases and is thought to unequivocally identify the RNA-dependent RNA polymerases of positive strand RNA viruses. Based on the obtained alignment a tentative phylogenetic tree of viral RNA polymerases was constructed for the first time. The RNA-dependent RNA polymerases of positive strand RNA viruses are concluded to comprise a distinct family of evolutionary related proteins.  相似文献   

3.
A Bernad  A Zaballos  M Salas    L Blanco 《The EMBO journal》1987,6(13):4219-4225
The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.  相似文献   

4.
J Bouvier  P Schneider  R Etges  C Bordier 《Biochemistry》1990,29(43):10113-10119
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.  相似文献   

5.
Site-directed mutagenesis was employed to replace cysteine 12 with phenylalanine in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase). Glutamine-dependent amidophosphoribosyltransferase activity was abolished as a consequence of the mutation. The mutant enzyme, however, exhibited NH3-dependent activity, contained Fe-S, and was normally regulated by AMP. These results document the role of the active site cysteine in activation of glutamine for amide transfer. NH3-dependent amidophosphoribosyltransferase was utilized for de novo purine nucleotide synthesis. Cells containing the mutant enzyme grew at nearly the wild-type rate in media containing a high concentration of NH4Cl. The Phe-12 mutation was used to study NH2-terminal processing. Whereas the wild-type Cys-12 enzyme is processed correctly in Escherichia coli by removal of 11 amino acid residues from the NH2 terminus, the Phe-12 mutant enzyme was not subject to undecapeptide processing. Neither the mutant nor wild-type enzyme made in vitro was correctly processed. Alternative enzymatic and autocatalytic processing mechanisms were considered. The available evidence favors autocatalytic NH2-terminal undecapeptide processing.  相似文献   

6.
7.
Studies of replicative DNA polymerases have led to the generalization that abasic sites are strong blocks to DNA replication. Here we show that yeast replicative DNA polymerase ϵ bypasses a model abasic site with comparable efficiency to Pol η and Dpo4, two translesion polymerases. DNA polymerase ϵ also exhibited high bypass efficiency with a natural abasic site on the template. Translesion synthesis primarily resulted in deletions. In cases where only a single nucleotide was inserted, dATP was the preferred nucleotide opposite the natural abasic site. In contrast to translesion polymerases, DNA polymerase ϵ with 3′–5′ proofreading exonuclease activity bypasses only the model abasic site during processive synthesis and cannot reinitiate DNA synthesis. This characteristic may allow other pathways to rescue leading strand synthesis when stalled at an abasic site.  相似文献   

8.
The ability of human alpha and beta DNA polymerases and herpes simplex virus type 2 (HSV-2) and human cytomegalovirus (HCMV) DNA polymerases to insert and extend several nucleotide analogs has been investigated using a variation of Sanger-Coulson DNA sequencing technology. The analogs included the triphosphates of two antiviral nucleosides with incomplete sugar rings: 9-(1,3-dihydroxy-2-propoxymethyl)guanine (dhpG) and 9-(2-hydroxyethoxymethyl)guanine (acyG or acyclovir), as well as dideoxy and arabinosyl nucleoside triphosphates. Three pairs of contrasting behaviors were found, each pair distinguishing the two human polymerases from the two viral ones: first, extension behavior with araNTPs; second, insertion/extension behavior with dhpGTP; and third, the relative preference for insertion of ddGTP versus acyGTP. The relative level of insertion of the nucleotide analogs by HCMV and HSV-2 DNA polymerases was dhpGTP greater than (acyGTP and araNTP) greater than ddGTP, whereas by human alpha polymerase it was araATP greater than ddGTP much greater than (acyGTP and dhpGTP) and by human beta polymerase it was (araATP and ddGTP) much greater than (acyGTP and dhpGTP). Evidence is presented for three mechanisms of inhibition by extendible nucleotides (of dhp and ara types) exhibiting frequent internalization: araATP acted as a simple pseudoterminator of alpha and beta polymerases, but was easily extended past singlet sites by Herpesviridae polymerases and only stalled at sites requiring two or more araATP insertions in a row. Herpesviridae polymerases stalled after adding dhpGMP and one additional nucleotide, suggesting that polymerase translocation problems may be a factor in polymerase inhibition by modified sugar nucleotide analogs. The amino acid sequence of the human alpha DNA polymerase, which is acyGTP resistant, was found to vary by one amino acid from the amino sequences of the Herpesviridae polymerases in a region of significant similarity and probable functional homology. Amino acid differences at that same site differentiate acyclovir-resistant HSV-1 mutants from the acyclovir-sensitive HSV-1 wild type.  相似文献   

9.
Adenovirus DNA polymerase (Ad pol) is a eukaryotic-type DNA polymerase involved in the catalysis of protein-primed initiation as well as DNA polymerization. The functional significance of the (I/Y)XGG motif, highly conserved among eukaryotic-type DNA polymerases, was analyzed in Ad pol by site-directed mutagenesis of four conserved amino acids. All mutant polymerases could bind primer-template DNA efficiently but were impaired in binding duplex DNA. Three mutant polymerases required higher nucleotide concentrations for effective polymerization and showed higher exonuclease activity on double-stranded DNA. These observations suggest a local destabilization of DNA substrate at the polymerase active site. In agreement with this, the mutant polymerases showed reduced initiation activity and increased K(m)(app) for the initiating nucleotide, dCMP. Interestingly, one mutant polymerase, while capable of elongating on the primer-template DNA, failed to elongate after protein priming. Further investigation of this mutant polymerase showed that polymerization activity decreased after each polymerization step and ceased completely after formation of the precursor terminal protein-trinucleotide (pTP-CAT) initiation intermediate. Our results suggest that residues in the conserved motif (I/Y)XGG in Ad pol are involved in binding the template strand in the polymerase active site and play an important role in the transition from initiation to elongation.  相似文献   

10.
In DNA polymerases from families A and B in the closed conformation, several positively charged residues, located in pre-motif B and motif B, have been shown to interact with the phosphate groups of the incoming nucleotide at the polymerisation active site: the invariant Lys of motif B and the nearly invariant Lys of pre-motif B (family B) correspond to a His in family A DNA polymerases. In phi29 DNA polymerase, belonging to the family B DNA polymerases able to start replication by protein-priming, the corresponding residues, Lys383 and Lys371, have been shown to be dNTP-ligands. Since in several DNA polymerases a third residue has been involved in dNTP binding, we have addressed here the question if in the DNA polymerases of the protein-primed subfamily, and especially in phi29 DNA polymerase, there are more than these two residues involved in nucleotide binding. By site-directed mutagenesis in phi29 DNA polymerase the functional role of the remaining two conserved positively charged amino acid residues of pre-motif B and motif B (besides Lys371 and Lys383) has been studied. The results indicate that residue Lys379 of motif B is also involved in dNTP binding, possibly through interaction with the triphosphate moiety of the incoming nucleotide, since the affinity for nucleotides of mutant DNA polymerase K379T was reduced in DNA and TP-primed reactions. On the other hand, we propose that, when the terminal protein (TP) is present at the polymerisation active site, residue Lys366 of pre-motif B is involved in stabilising the incoming nucleotide in an appropriate position for efficient TP-deoxynucleotidylation. Although mutant DNA polymerase K366T showed a wild-type like phenotype in DNA-primed polymerisation in the presence of DNA as template, in TP-primed reactions as initiation and transition it was impaired, especially in the presence of the phi29 DBP, protein p6.  相似文献   

11.
DNA polymerases that initiate replication by protein-priming are able to catalyze terminal protein (TP)-primed initiation, the following transition steps and finally DNA-primed elongation. Therefore, their structures must be able to position sequentially both primers, TP and DNA, at a common binding site. For DNA-templated initiation, these DNA polymerases have to bind the origin of replication as template and TP as primer. It is likely that very precise interactions are required to position both TP and templating nucleotide at the polymerization active site. Such a specificity during TP-priming must rely on specific amino acids that must be evolutionarily conserved in this subfamily of DNA polymerases. By site-directed mutagenesis, we have analyzed the functional significance of Lys392 of phi29 DNA polymerase, immediately adjacent to the Kx3NSxYG motif, and specifically conserved among protein-primed DNA polymerases. During TP-primed initiation, mutations in this residue did not affect untemplated TP-dAMP formation, indicating that the interaction with the initiating nucleotide and TP were not affected, whereas the template-directed initiation activity was severely inhibited. Both mutant DNA polymerases had a wild-type-like (overall) DNA binding activity. We thus infer that residue Lys392 of phi29 DNA polymerase is important for the correct positioning of the templating nucleotide at the polymerization active site, a critical requirement during template-directed TP-priming at phi29 DNA origins. Consequently, mutation of this residue compromised the fidelity of the initiation reaction, not controlled by the 3'-5' exonuclease activity. During DNA-primed polymerization, the mutant polymerases showed a defect in translocation of the template strand. This translocation problem could be the consequence of a more general defect in the stabilization and positioning of a next templating nucleotide at the polymerization active site, during DNA-primed DNA synthesis.  相似文献   

12.
Abasic sites represent the most frequent DNA lesions in the genome that have high mutagenic potential and lead to mutations commonly found in human cancers. Although these lesions are devoid of the genetic information, adenine is most efficiently inserted when abasic sites are bypassed by DNA polymerases, a phenomenon termed A‐rule. In this study, we present X‐ray structures of a DNA polymerase caught while incorporating a nucleotide opposite an abasic site. We found that a functionally important tyrosine side chain directs for nucleotide incorporation rather than DNA. It fills the vacant space of the absent template nucleobase and thereby mimics a pyrimidine nucleobase directing for preferential purine incorporation opposite abasic residues because of enhanced geometric fit to the active site. This amino acid templating mechanism was corroborated by switching to pyrimidine specificity because of mutation of the templating tyrosine into tryptophan. The tyrosine is located in motif B and highly conserved throughout evolution from bacteria to humans indicating a general amino acid templating mechanism for bypass of non‐instructive lesions by DNA polymerases at least from this sequence family.  相似文献   

13.
A new gene (POLL) encoding a novel DNA polymerase (Pol lambda) has been identified at mouse chromosome 19. Murine Pol lambda, consisting of 573 amino acid residues, has a 32% identity to Pol beta, involved in nuclear DNA repair in eukaryotic cells. It is interesting that Pol lambda contains all the critical residues involved in DNA binding, nucleotide binding and selection, and catalysis of DNA polymerization, that are conserved in Pol beta and other DNA polymerases belonging to family X. Murine Pol lambda, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity when assessed by in situ gel analysis. Pol lambda also conserves the critical residues of Pol beta required for its intrinsic deoxyribose phosphate lyase (dRPase) activity. The first 230 amino acid residues of Pol lambda, that have no counterpart in Pol beta, contain a BRCT domain, present in a variety of cell-cycle check-point control proteins responsive to DNA damage and proteins involved in DNA repair. Northern blotting, in situ hybridization analysis and immunostaining showed high levels of Pol lambda specifically expressed in testis, being developmentally regulated and mainly associated to pachytene spermatocytes. These first evidences, although indirect, suggest a potential role of Pol lambda in DNA repair synthesis associated with meiosis.  相似文献   

14.
The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.  相似文献   

15.
The dnaE gene of Escherichia coli encodes the DNA polymerase (α subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.  相似文献   

16.
DNA polymerase zeta (pol zeta), which is required for DNA damage-induced mutagenesis, functions in the error-prone replication of a wide range of DNA lesions. During this process, pol zeta extends from nucleotides incorporated opposite template lesions by other polymerases. Unlike classical polymerases, pol zeta efficiently extends from primer-terminal base pairs containing mismatches or lesions, and it synthesizes DNA with moderate fidelity. Here we describe genetic and biochemical studies of three yeast pol zeta mutant proteins containing substitutions of highly conserved amino acid residues that contact the triphosphate moiety of the incoming nucleotide. The R1057A and K1086A proteins do not complement the rev3Delta mutation, and these proteins have significantly reduced polymerase activity relative to the wild-type protein. In contrast, the K1061A protein partially complements the rev3Delta mutation and has nearly normal polymerase activity. Interestingly, the K1061A protein has increased fidelity relative to wild-type pol zeta and is somewhat less efficient at extending from mismatched primer-terminal base pairs. These findings have important implications both for the evolutionary divergence of pol zeta from classical polymerases and for the mechanism by which this enzyme accommodates distortions in the DNA caused by mismatches and lesions.  相似文献   

17.
Pseudomonas KB 740 degrades 2-aminobenzoate aerobically via a chimeric pathway which combines characteristics of anaerobic and aerobic aromatic metabolism. Atypically, 2-aminobenzoyl-CoA is an intermediate, and the activated aromatic acid is not only hydroxylated but also reduced to an alicyclic compound in a single step. The bacterial strain possesses a small plasmid, pKB 740, which carries all essential information of this new pathway. Its total nucleotide sequence was determined. It consists of 8280 bp and contains the genes for the two initial enzymes of the pathway; 2-aminobenzoate-CoA ligase catalyzes the activation of the aromatic acid, and the flavoenzyme 2-aminobenzoyl-CoA monooxygenase/reductase catalyzes the hydroxylation (monooxygenase activity) and subsequent reduction (reductase activity) of the aromatic ring of 2-aminobenzoyl-CoA. Furthermore, five open reading frames (ORF) possibly coding for polypeptides are on the plasmid. Putative promoter sequences were found for two of the ORF. A nucleotide sequence able to form a possible termination loop was located downstream of the gene for 2-aminobenzoyl-CoA monooxygenase/reductase. This gene consists of 2190 bases. The deduced amino acid sequence of the protein (730 residues; calculated molecular mass of the native 729-residue protein, 83,559 Da) contains a consensus sequence for an FAD-binding site at the N-terminus and a possible NAD(P)H-binding site approximately 150 amino acid residues apart from the N-terminus. The monooxygenase/reductase shows low sequence similarity to the flavoprotein salicylate hydroxylase. Functional and evolutionary aspects of this work are discussed.  相似文献   

18.
DNA and RNA polymerase exhibit similarities in structures and catalytic mechanisms, suggesting that both classes of enzymes are evolutionarily related. To probe the biochemical and structure-function relationship between the two classes of polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 of 8000) was tested for the ability to incorporate successive ribonucleotides; 23 unique mutants that added rNTPs into a growing polynucleotide chain were identified and sequenced. These mutants, each containing one to four substitutions, incorporate ribonucleotides at a efficiency approaching 10(3)-fold greater than that of wild type Taq pol I. Several mutants added successive ribonucleotides and thus can catalyze the synthesis of RNA. Sequence analysis of these mutants demonstrates that at least two amino acid residues are involved in excluding ribonucleotides from the active site. Interestingly, wild type DNA polymerases from several distinct families selectively discriminate against rUTP. This study suggests that current DNA and RNA polymerases could have evolved by divergent evolution from an ancestor that shared a common mechanism for polynucleotide synthesis.  相似文献   

19.
Phage Φ29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as the primer for initiation of DNA synthesis. In one of the most important motifs present in the 3′→5′ exonucleolytic domain of proofreading DNA polymerases, the ExoII motif, Φ29 DNA polymerase contains three amino acid residues, Y59, H61 and F69, which are highly conserved among most proofreading DNA polymerases. These residues have recently been shown to be involved in proper stabilization of the primer terminus at the 3′→5′ exonuclease active site. Here we investigate by means of site-directed mutagenesis the role of these three residues in reactions that are specific for DNA polymerases utilizing a protein-primed DNA replication mechanism. Mutations introduced at residues Y59, H61 and F69 severely affected the protein-primed replication capacity of Φ29 DNA polymerase. For four of the mutants, namely Y59L, H61L, H61R and F69S, interaction with the terminal protein was affected, leading to few initiation and transition products. These findings, together with the specific conservation of Y59, H61 and F69 among DNA polymerases belonging to the protein-primed subgroup, strongly suggest a functional role of these amino acid residues in the DNA polymerase–terminal protein interaction.  相似文献   

20.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号