首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂筏在病毒感染中的作用   总被引:3,自引:0,他引:3  
脂筏是细胞膜上富含鞘脂和胆固醇的微区结构,广泛分布于细胞的膜系统.脂筏中含有诸多信号分子和免疫受体,在细胞的生命活动中扮演非常重要的角色.更为重要的是,脂筏为细胞表面发生的蛋白质-蛋白质和蛋白质-脂类分子间的相互作用提供了平台.研究表明,很多病毒可以利用细胞膜表面的脂筏结构介导其侵入宿主细胞,一些病毒可以借助脂筏结构完成病毒颗粒的组装和出芽.本文将综述不同类型的病毒如SV40、HIV等借助脂筏完成入侵以及流感病毒等利用脂筏完成组装和出芽的证据及机理,并概述目前研究病毒与脂筏相互作用的方法及存在的问题.深入研究脂筏在病毒感染中的作用,将有助于对病毒与宿主细胞的相互作用的理解,从而可能发现新的、有效的对抗病毒的方法。  相似文献   

2.
The lipid raft hypothesis proposed that these microdomains are small (10–200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.  相似文献   

3.
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.  相似文献   

4.
The mechanism of phagocytosis of pathogens remains to be fully characterized. We report a novel phagocytosis pathway for Pseudomonas aeruginosa, which is initiated by cholesterol-rich membrane rafts and is dependent on Lyn, primarily an immune regulator with both positive and negative roles. Blocking of Lyn or blocking of cholesterol synthesis significantly inhibited phagocytosis by alveolar macrophages. We found that Lyn, via Src homology 2 and 3 domains, bound to and then activated PI3K and Akt to regulate intracellular routing of the engulfed P. aeruginosa. Further analysis indicates that Lyn and raft components entered in phagosomes and late lysosomes. Finally, respiratory burst was dependent on Lyn and membrane rafts, as confirmed by small interfering RNA and dominant-negative strategies. Our investigations demonstrate that Lyn along with membrane rafts plays a fundamental role in phagocytosis by alveolar macrophages during infection.  相似文献   

5.
Accumulating reports document the use by pathogens of cholesterol‐enriched lipid microdomains, often called lipid rafts, as cell surface platforms to interact, bind and possibly enter into host cells. The challenge is now to understand what could be the functional role of these domains during pathogen invasion. Are they hijacked as general clustering devices for cellular binding sites and/or do they have other roles? In particular, is their cell signalling capacity activated and used by pathogens? In reverse, could lipid rafts activate bacterial mechanisms required for invasion? These issues will be discussed after an introduction on the current view on lipid rafts.  相似文献   

6.
Lipid rafts are membrane microdomains enriched in saturated phospholipids, sphingolipids, and cholesterol. They have a varied but distinct protein composition and have been implicated in diverse cellular processes including polarized traffic, signal transduction, endo- and exo-cytoses, entrance of obligate intracellular pathogens, and generation of pathological forms of proteins associated with Alzheimer's and prion diseases. Raft proteins can be permanently or temporarily associated to lipid rafts. Here, we review recent advances on the biochemical and cell biological characterization of rafts, and on the emerging concept of the temporary residency of proteins in rafts as a regulatory mechanism of their biological activity.  相似文献   

7.
Although evidences that cell membrane contains microdomains are accumulating, the exact properties, diversity and levels of organization of small lipid patches built mainly of cholesterol and sphingomyelin, termed rafts, remain to be elucidated. Our understanding of the cell membrane is increasing with each new raft feature discovered. Nowadays rafts are suggested to act as sites of cell signaling events, to be a part of protein sorting machinery but also they are used by several pathogens as gates into the cells. It is still unclear how rafts are connected to the membrane skeleton and cytoskeleton and with how many different types of rafts are we actually dealing with. This review summarizes some of the most recent discoveries trying to make a view of the complex raft properties.  相似文献   

8.
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.Key Words: plasma membrane, Medicago, root, legume-Rhizobium symbiosis, redox, sterol, sphingolipid  相似文献   

9.
Many pathogens, including many traditionally extracellular microbes, now appear capable of entry into host cells with limited loss of viability. A portal of entry shared by some bacteria, bacterial toxins, viruses and parasites are caveolae (or lipid rafts), which are involved in the import and intracellular translocation of macromolecules in host cells. A requirement for caveolae-mediated endocytosis of microbes appears to be that the respective receptor is a constituent of caveolae or must move to caveolae following ligation.  相似文献   

10.
Lipid rafts are microdomains present in the membrane of eukaryotic organisms and bacterial pathogens. They are characterized by having tightly packed lipids and a subset of specific proteins. Lipid rafts are associated with a variety of important biological processes including signaling and lateral sorting of proteins. To determine whether lipid rafts exist in the inner membrane of Borrelia burgdorferi, we separated the inner and outer membranes and analyzed the lipid constituents present in each membrane fraction. We found that both the inner and outer membranes have cholesterol and cholesterol glycolipids. Fluorescence anisotropy and FRET showed that lipids from both membranes can form rafts but have different abilities to do so. The analysis of the biochemically defined proteome of lipid rafts from the inner membrane revealed a diverse set of proteins, different from those associated with the outer membrane, with functions in protein trafficking, chemotaxis and signaling.  相似文献   

11.
The fluid mosaic model of the plasma membrane has evolved considerably since its original formulation 30 years ago. Membrane lipids do not form a homogeneous phase consisting of glycerophospholipids (GPLs) and cholesterol, but a mosaic of domains with unique biochemical compositions. Among these domains, those containing sphingolipids and cholesterol, referred to as membrane or lipid rafts, have received much attention in the past few years. Lipid rafts have unique physicochemical properties that direct their organisation into liquid-ordered phases floating in a liquid-crystalline ocean of GPLs. These domains are resistant to detergent solubilisation at 4 degrees C and are destabilised by cholesterol- and sphingolipid-depleting agents. Lipid rafts have been morphologically characterised as small membrane patches that are tens of nanometres in diameter. Cellular and/or exogenous proteins that interact with lipid rafts can use them as transport shuttles on the cell surface. Thus, rafts act as molecular sorting machines capable of co-ordinating the spatiotemporal organisation of signal transduction pathways within selected areas ('signalosomes') of the plasma membrane. In addition, rafts serve as a portal of entry for various pathogens and toxins, such as human immunodeficiency virus 1 (HIV-1). In the case of HIV-1, raft microdomains mediate the lateral assemblies and the conformational changes required for fusion of HIV-1 with the host cell. Lipid rafts are also preferential sites of formation for pathological forms of the prion protein (PrPSc) and of the [beta]-amyloid peptide associated with Alzheimer's disease. The possibility of modulating raft homeostasis, using statins and synthetic sphingolipid analogues, offers new approaches for therapeutic interventions in raft-associated diseases.  相似文献   

12.
The route of initial entry influences how host cells respond to intracellular pathogens. Recent studies have demonstrated that a wide variety of pathogens target lipid microdomains in host cell membranes, known as lipid rafts, to enter host cells as an infectious strategy.  相似文献   

13.
The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different ‘types’ of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.  相似文献   

14.
Summary The plasma membrane is not a uniform two-dimensional space but includes various types of specialized regions containing specific lipids and proteins. These include clathrin-coated pits and caveolae. The existence of other cholesterol- and glycosphingolipid-rich microdomains has also been proposed. The aim of this review is to illustrate that these latter domains, also called lipid rafts, may be the preferential interaction sites between a variety of toxins, bacteria, and viruses and the target cell. These pathogens and toxins have hijacked components that are preferentially found in rafts, such as glycosylphosphatidylinositol-anchored proteins, sphingomyelin, and cholesterol. These molecules not only allow binding of the pathogen or toxin to the proper target cell but also appear to potentiate the toxic action. We briefly review the structure and proposed functions of cholesterol- and glycosphingolipid-rich microdomains and then describe the toxins and pathogens that interact with them. When possible the advantage conferred by the interaction with microdomains will be discussed.Abbreviation GPI glycosylphosphatidylinositol  相似文献   

15.
Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft‐associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC‐MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 ( http://proteomecentral.proteomexchange.org/dataset/PXD002365 ).  相似文献   

16.
Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.  相似文献   

17.
Exploitation of the host-cell actin cytoskeleton is pivotal for many microbial pathogens to enter cells, to disseminate within and between infected tissues, to prevent their uptake by phagocytic cells, or to promote intimate attachment to the cell surface. To accomplish this, these pathogens have evolved common as well as unique strategies to modulate actin dynamics at the plasma membrane, which will be discussed here, exemplified by a number of well-studied bacterial pathogens.  相似文献   

18.
Field observations have demonstrated that gravid Anopheles gambiae Giles s.s. (Diptera: Culicidae) are selective in their choice of oviposition sites. For example, immature stages of An. gambiae s.s. are rarely found in water that contains Culex quinquefasciatus Say immatures. The possibility that this may, in part at least, reflect a response by ovipositing An. gambiae s.s. females to volatile signals associated with Culex juveniles was evaluated by testing the response of An. gambiae s.s. females to varying densities of Cx. quinquefasciatus egg rafts and/or larvae in oviposition choice assays. For comparison, the oviposition choices of Cx. quinquefasciatus to conspecific egg rafts and/or larvae were similarly assayed. At a low density of Cx. quinquefasciatus egg rafts (1-15 egg rafts/100 mL water), An. gambiae s.s. females laid more eggs in the treatment water than in the control, with a maximum of twice as many in the treatment water at 5 egg rafts/100 mL water. At higher egg raft densities and in all treatments that included Cx. quinquefasciatus larvae, oviposition decreased significantly in the treatment dishes in a density-dependent manner. As previous studies have indicated, ovipositing Cx. quinquefasciatus females were attracted to and laid egg rafts in dishes containing conspecific egg rafts and, interestingly, also in dishes containing larvae.  相似文献   

19.
The enterocyte brush border of the small intestine is a highly specialized membrane designed to function both as a high capacity digestive/absorptive surface of dietary nutrients and a permeability barrier towards lumenal pathogens. It is characterized by an unusually high content of glycolipids (∼30% of the total microvillar membrane lipid), enabling the formation of liquid ordered microdomains, better known as lipid rafts. The glycolipid rafts are stabilized by galectin-4, a 36 kDa divalent lectin that cross-links galactosyl (and other carbohydrate) residues present on membrane lipids and several brush border proteins, including some of the major hydrolases. These supramolecular complexes are further stabilized by intelectin, a 35 kDa trimeric lectin that also functions as an intestinal lactoferrin receptor. As a result, brush border hydrolases, otherwise sensitive to pancreatic proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry to the organism.  相似文献   

20.
Secreted proteins are central to the success of plant pathogenic bacteria. They are used by plant pathogens to adhere to and degrade plant cell walls, to suppress plant defence responses, and to deliver bacterial DNA and proteins into the cytoplasm of plant cells. However, experimental investigations into the identity and role of secreted proteins in plant pathogenesis have been hindered by the fact that many of these proteins are only expressed or secreted in planta, that knockout mutations of individual proteins frequently have little or no obvious phenotype, and that some obligate and fastidious plant pathogens remain recalcitrant to genetic manipulation. The availability of genome sequence data for a large number of agriculturally and scientifically important plant pathogens enables us to predict and compare the complete secretomes of these bacteria. In this paper we outline strategies that are currently being used to identify secretion systems and secreted proteins in Proteobacterial plant pathogens and discuss the implications of these analyses for future investigations into the molecular mechanisms of plant pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号