首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase which has multiple functions, including inhibition of the mitogen-activated protein (MAP) kinase pathway. Simian virus 40 small t antigen specifically inhibits PP2A function by binding to the PP2A regulatory subunit, interfering with the ability of PP2A to associate with its cellular substrates. We have reported that the expression of small t antigen inhibits PP2A association with Shc, leading to augmentation of insulin and epidermal growth factor-induced Shc phosphorylation with enhanced activation of the Ras/MAP kinase pathway. However, the potential involvement of PP2A in insulin's metabolic signaling pathway is presently unknown. To assess this, we overexpressed small t antigen in 3T3-L1 adipocytes by adenovirus-mediated gene transfer and found that the phosphorylation of Akt and its downstream target, glycogen synthase kinase 3beta, were enhanced both in the absence and in the presence of insulin. Furthermore, protein kinase C lambda (PKC lambda) activity was also augmented in small-t-antigen-expressing 3T3-L1 adipocytes. Consistent with this result, both basal and insulin-stimulated glucose uptake were enhanced in these cells. In support of this result, when inhibitory anti-PP2A antibody was microinjected into 3T3-L1 adipocytes, we found a twofold increase in GLUT4 translocation in the absence of insulin. The small-t-antigen-induced increase in Akt and PKC lambda activities was not inhibited by wortmannin, while the ability of small t antigen to enhance glucose transport was inhibited by dominant negative Akt (DN-Akt) expression and Akt small interfering RNA (siRNA) but not by DN-PKC lambda expression or PKC lambda siRNA. We conclude that PP2A is a negative regulator of insulin's metabolic signaling pathway by promoting dephosphorylation and inactivation of Akt and PKC lambda and that most of the effects of PP2A to inhibit glucose transport are mediated through Akt.  相似文献   

2.
The N-nitrosodimethylamine demethylase (P450I-IE1) is induced severalfold in liver by giving rats ethanol, acetone, pyrazole, and other related small molecular weight compounds. This induction is not the result of an increase in IIE1 mRNA, but could be due to either an increase in translation rate or a decrease in protein degradation. To determine the mechanism of induction, we measured IIE1 synthesis and degradation rates in untreated and acetone-treated rats. This was accomplished by immunopurification of radiolabeled IIE1 protein using a specific monoclonal antibody subsequent to in vivo labeling of total cellular protein with either NaH14CO3 or [3H]leucine. We found that in rats fed acetone, the rate of IIE1 synthesis was not changed; however, IIE1 degradation was markedly altered. In untreated rats, IIE1 protein was degraded via a biphasic pathway consisting of both a rapid and slow component with approximate half-lives of 7 and 37 h, respectively. However, in acetone-treated rats, only a monophasic curve with a half-life of 37 h was observed. The abolition of the rapid degradation component of the IIE1 turnover cycle indicates that induction of IIE1 by acetone is primarily due to specific stabilization of IIE1 protein. Since acetone is also metabolized by IIE1, we believe that this may be a substrate-induced enzyme stabilization.  相似文献   

3.
4.
5.
Akt is stimulated by several growth factors and has a major anti-apoptotic role in the cell. Therefore, we hypothesized that a pathway leading to the inhibition of Akt might be utilized in the process of apoptosis. Accordingly, we used a yeast two-hybrid screening assay to identify the proteins that interact with and possibly inhibit Akt. We found that the C-terminal region of protein kinase C-related kinase 2 (PRK2), containing amino acids 862 to 908, specifically binds to Akt in yeast and mammalian cells. During early stages of apoptosis, the C-terminal region of PRK2 is cleaved from the inhibitory N-terminal region and can bind Akt. The protein-protein interaction between Akt and the PRK2 C-terminal region specifically down-modulates the protein kinase activities of Akt by inhibiting phosphorylation at threonine 308 and serine 473 of Akt. This inhibition of Akt leads to the inhibition of the downstream signaling of Akt in vivo. The PRK2 C-terminal fragment strongly inhibits the Akt-mediated phosphorylation of BAD, a pro-apoptotic Bcl-2 family protein, and blocks the anti-apoptotic activities of Akt in vivo. These results provide direct evidence that the products of protein cleavage during apoptosis inhibit pro-survival signalings, leading to the amplification of pro-apoptotic signalings in the cell.  相似文献   

6.
The protein serine-threonine kinase Akt mediates cell survival signaling initiated by various growth-promoting factors such as insulin. Here we report that SEK1 is a target of Akt in intact cells. Insulin inhibited the anisomycin-induced stimulation of both endogenous SEK1 and its substrate c-Jun N-terminal kinase (JNK), but not that of the upstream kinase MEKK1, in 293T cells. The inhibitory action of insulin on SEK1 or JNK1 activation was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002. Expression of a constitutively active form of Akt also inhibited both SEK1 and JNK1 activation, but not that of MEKK1, in transfected 293T cells. Co-immunoprecipitation analysis revealed that endogenous Akt physically interacted with endogenous SEK1 in cells and that this interaction was promoted by insulin. In vitro and in vivo (32)P labeling indicated that Akt phosphorylated SEK1 on serine 78. The SEK1 mutant SEK1(S78A) was resistant to Akt-induced inhibition. Finally, activated Akt inhibited SEK1-mediated apoptosis, and this effect of Akt was prevented by overexpression of SEK(S78A). Taken together, these results suggest that Akt suppresses stress-activated signaling by targeting SEK1.  相似文献   

7.
Respiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival. A critical negative regulator of p53 is murine double minute 2 (Mdm2), an E3 ubiquitin ligase that targets p53 for proteasome degradation. Mdm2 is activated by phospho-Akt, and we previously showed that RSV activates Akt and delays apoptosis in primary human airway epithelial cells. In this study, we explore further the mechanism by which RSV regulates p53 to delay apoptosis but paradoxically enhance inflammation. We found that RSV activates Mdm2 1-6 h after infection resulting in a decrease in p53 6-24 h after infection. The p53 down-regulation correlates with increased airway epithelial cell longevity. Importantly, inhibition of the PI3K/Akt pathway blocks the activation of Mdm2 by RSV and preserves the p53 response. The effects of RSV infection are antagonized by Nutlin-3, a specific chemical inhibitor that prevents the Mdm2/p53 association. Nutlin-3 treatment increases endogenous p53 expression in RSV infected cells, causing earlier cell death. This same increase in p53 enhances viral replication and limits the inflammatory response as measured by IL-6 protein. These findings reveal that RSV decreases p53 by enhancing Akt/Mdm2-mediated p53 degradation, thereby delaying apoptosis and prolonging survival of airway epithelial cells.  相似文献   

8.
Although sphingosine-1-phosphate (S1P) is a well-known mitogen, it has only recently been demonstrated that S1P is able to inhibit cell proliferation in human epidermal keratinocytes and hepatic myofibroblasts. In the present study, we investigated the possible signalling pathways involved in the growth inhibition of human keratinocytes. Our results show that S1P potently inhibits keratinocyte proliferation, and that this leads to the inhibition of DNA synthesis. Interestingly, the prolonged activation of extracellular signal-regulated protein kinase (ERK) and the transient inactivation of Akt/protein kinase B (PKB) were also observed in concert with the inhibition of keratinocyte proliferation by S1P. To verify further the antiproliferative action of S1P, we examined changes in cell cycle-related proteins. S1P inhibited cyclin D(2) synthesis but stimulated p21(WAF1/CIP1) (p21) and p27(KIP1) (p27) synthesis; all are inhibitors of cyclin-dependent kinase. Furthermore, we found that the growth inhibition by S1P was in part abolished by pertussis toxin (PTX) treatment, but that ERK activation and Akt/PKB inhibition were not abrogated, suggesting that S1P functions both intracellularly, as a second messenger, and extracellularly, as a ligand for cell surface receptors. Insulin-like growth factor I (IGF-I) is a well-established human keratinocyte mitogen and is known to stimulate Akt/PKB in various cell types. In the present study, S1P was found to inhibit the keratinocyte proliferation and Akt/PKB activation induced by IGF-I. Our results suggest that S1P may play an important role in the negative regulation of keratinocyte proliferation by inhibiting the Akt/PKB pathway.  相似文献   

9.
10.
A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled at the levels of both translation initiation and elongation. Eukaryotic elongation factor-2 (eEF2) mediates the translocation step of peptide-chain elongation and is inhibited through phosphorylation by eEF2 kinase. In addition, p70S6 kinase can regulate protein synthesis by phosphorylating eEF2 kinase or via phosphorylation of ribosomal protein S6. We have recently shown that eEF2 kinase is also controlled by phosphorylation by AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis. Moreover, the mammalian target of rapamycin has also been shown to be inhibited, indirectly, by AMPK, thus leading to the inhibition of p70S6 kinase. Although AMPK activation has been shown to modulate protein synthesis, it is unknown whether AMPK could also be a regulator of cardiac hypertrophic growth. Therefore, we investigated the role of AMPK activation in regulating protein synthesis during both phenylephrine- and Akt-induced cardiac hypertrophy. Metformin and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside were used to activate AMPK in neonatal rat cardiac myocytes. Activation of AMPK significantly decreased protein synthesis induced by phenylephrine treatment or by expression of constitutively active Akt. Activation of AMPK also resulted in decreased p70S6 kinase phosphorylation and increased phosphorylation of eEF2, suggesting that inhibition of protein synthesis involves the eEF2 kinase/eEF2 axis and/or the p70S6 kinase pathway. Together, our data suggest that the inhibition of protein synthesis by pharmacological activation of AMPK may be a key regulatory mechanism by which hypertrophic growth can be controlled.  相似文献   

11.
12.
Akt/protein kinase B promotes organ growth in transgenic mice   总被引:24,自引:0,他引:24       下载免费PDF全文
One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.  相似文献   

13.
Regulation of the Pro-apoptotic scaffolding protein POSH by Akt   总被引:2,自引:0,他引:2  
POSH (Plenty of SH3 domains) binds to activated Rac and promotes apoptosis by acting as a scaffold to assemble a signal transduction pathway leading from Rac to JNK activation. Overexpression of POSH induces apoptosis in a variety of cell types, but apoptosis can be prevented by co-expressing the pro-survival protein kinase Akt. We report here that POSH is a direct substrate for phosphorylation by Akt in vivo and in vitro, and we identify a major site of Akt phosphorylation as serine 304 of POSH, which lies within the Rac-binding domain. We further show that phosphorylation of POSH results in a decreased ability to bind activated Rac, as does phosphomimetic S304D and S304E mutation of POSH. S304D mutant POSH also shows a strongly reduced ability to induce apoptosis. These findings identify a novel mechanism by which Akt promotes cell survival.  相似文献   

14.
Akt/protein kinase B is a major cell survival pathway through phosphorylation of proapoptotic proteins Bad and Bax and of additional apoptotic pathways linked to Forkhead proteins glycogen synthase kinase-3beta and ASK1. To further explore the mechanism by which Akt regulates cell survival, we identified an Akt interaction protein by yeast two-hybrid screening. It is highly homologous to ARG-binding protein 2 (ArgBP2) with splicing exon 8 of the coding region of the ArgBP2. As two splicing isoforms (ArgBP2alpha and -beta) of ArgBP2 have been identified (Wang, B., Golemis, E. A., and Kruh, G. D. (1997) J. Biol. Chem. 272, 17542-17550), it was named ArgBP2gamma. ArgBP2gamma contains four Akt phosphorylation consensus sites, a SoHo motif, and three Src homology (SH) 3 domains and binds to C-terminal proline-rich motifs of Akt through its first and second SH3 domains. It also interacts with p21-activated protein kinase (PAK1) via its first and third SH3 domains, indicating the SH3 domains of ArgBP2gamma as docking sites for Akt and PAK1. Akt phosphorylates ArgBP2gamma in vitro and in vivo. Expression of ArgBP2gamma induces PAK1 activity and overrides apoptosis induced by ectopic expression of Bad or DNA damage. Nonphosphorylatable ArgBP2gamma-4A and SH3 domain-truncated mutant ArgBP2gamma inhibit Akt-induced PAK1 activation and reduce Akt and PAK1 phosphorylation of Bad and antiapoptotic function. These data indicate that ArgBP2gamma is a physiological substrate of Akt, functions as an adaptor for Akt and PAK1, and plays a role in Akt/PAK1 cell survival pathway.  相似文献   

15.
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.  相似文献   

16.
Acute pancreatitis (AP) has been shown in some studies to inhibit total protein synthesis in the pancreas, whereas in other studies, protein synthesis was not affected. Previous in vitro work has shown that high concentrations of cholecystokinin both inhibit protein synthesis and inhibit the activity of the guanine nucleotide exchange factor eukaryotic initiation factor (eIF)2B by increasing the phosphorylation of eIF2alpha. We therefore evaluated in C57BL/6 mice the effects of caerulein-induced AP on pancreatic protein synthesis, eIF2B activity and other protein translation regulatory mechanisms. Repetitive hourly injections of caerulein were administered at 50 microg/kg ip. Pancreatic protein synthesis was reduced 10 min after the initial caerulein administration and was further inhibited after three and five hourly injections. Caerulein inhibited the two major regulatory points of translation initiation: the activity of the guanine nucleotide exchange factor eIF2B (with an increase of eIF2alpha phosphorylation) and the formation of the eIF4F complex due, in part, to degradation of eIF4G. This inhibition was not accounted for by changes in the upstream stimulatory pathway, because caerulein activated Akt as well as phosphorylating the downstream effectors of mTOR, 4E-BP1, and ribosomal protein S6. Caerulein also decreased the phosphorylation of the eukaryotic elongation factor 2, implying that this translation factor was not inhibited in AP. Thus the inhibition of pancreatic protein synthesis in this model of AP most likely results from the inhibition of translation initiation as a result of increased eIF2alpha phosphorylation, reduction of eIF2B activity, and the inhibition of eIF4F complex formation.  相似文献   

17.
Vitamin K uptake in hepatocytes and hepatoma cells   总被引:1,自引:0,他引:1  
Li ZQ  He FY  Stehle CJ  Wang Z  Kar S  Finn FM  Carr BI 《Life sciences》2002,70(18):2085-2100
Hepatocellular carcinoma (HCC) or hepatoma cells have impaired ability to perform vitamin K-dependent carboxylation reactions. Vitamin K can also inhibit growth of HCC cells in vitro. Both carboxylation and growth inhibition are vitamin K dose dependent. We used rat hepatocytes, a vitamin K-growth sensitive (MH7777) and a vitamin K-growth resistant (H4IIE) rat hepatoma cell line to examine vitamin K uptake and vitamin K-mediated microsomal carboxylation. We found that vitamin K is taken up by normal rat hepatocytes against a saturable concentration gradient. The relative rates of uptake by rat hepatocytes and the two rat cell lines MH7777 and H4IIE correlated with their sensitivity to vitamin K-mediated cell growth inhibition. Pooled hepatocytes from liver nodules from rats treated with the hepatocarcinogen diethylnitrosamine (DEN) also had a reduced rate of vitamin K uptake. However, using a cell-free system, microsomes from both normal rat hepatocytes and the two rat hepatoma cell lines had a similar ability to support carboxylation mediated by exogenously added vitamin K. The results support the hypothesis that different sensitivity of hepatoma cells to vitamin K may be due to differences in vitamin K uptake and may be unrelated to the actions of vitamin K on carboxylation.  相似文献   

18.
19.
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF‐kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF‐kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome. J. Cell. Biochem. 114: 245–249, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Smooth muscle cell migration plays an important role during angiogenesis and vascular remodeling. In this study, we examined the effects of doxycycline and minocycline on vascular endothelial growth factor (VEGF)-induced human aortic smooth muscle cell (HASMCs) migration, and explored the mechanisms in which doxycycline or minocycline inhibit HASMC migration. We demonstrated that both doxycycline and minocycline attain consistent anti-angiogenic effects in the inhibition of HASMC migration via a different signal pathway (p<0.05). This effect is through attenuating VEGF-induced matrix metalloproteinase-9 (MMP-9) activity (p<0.05). Doxycycline could increase tissue inhibitors of metalloproteinases-1 (TIMP-1) expression while minocycline down-regulated PI3K/Akt phosphorylation in HASMC. Our study suggests that doxycycline has a stronger ability to inhibit MMP secretion in HASMC by up-regulating endogenous MMPs inhibitor TIMP-1, while minocycline implements anti-angiogenic effect through inhibiting HASMC migration by down-regulating PI3K/Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号