首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled by the ATPases, p97 and NSF. Golgi reassembly stacking protein 65 (GRASP65), an NEM-sensitive membrane-bound component, is required for the stacking process. NSF-mediated cisternal regrowth requires a vesicle tethering protein, p115, which we now show operates through its two Golgi receptors, GM130 and giantin. p97-mediated cisternal regrowth is p115-independent, but we now demonstrate a role for p115, in conjunction with its receptors, in stacking p97 generated cisternae. Temporal analysis suggests that p115 plays a transient role in stacking that may be upstream of GRASP65-mediated stacking. These results implicate p115 and its receptors in the initial alignment and docking of single cisternae that may be an important prerequisite for stack formation.  相似文献   

2.
Programmed cell death (apoptosis) is a conserved process aimed to eliminate unwanted cells. The key molecules are a group of proteases called caspases that cleave vital proteins, which leads to the death of cells. In Drosophila, the apoptotic pathway is usually represented as a cascade of events in which an initial stimulus activates one or more of the proapoptotic genes (hid, rpr, grim), which in turn activate caspases. In stress-induced apoptosis, the dp53 (Drosophila p53) gene and the Jun N-terminal kinase (JNK) pathway function upstream in the activation of the proapoptotic genes. Here we demonstrate that dp53 and JNK also function downstream of proapoptotic genes and the initiator caspase Dronc (Drosophila NEDD2-like caspase) and that they establish a feedback loop that amplifies the initial apoptotic stimulus. This loop plays a critical role in the apoptotic response because in its absence there is a dramatic decrease in the amount of cell death after a pulse of the proapoptotic proteins Hid and Rpr. Thus, our results indicate that stress-induced apoptosis in Drosophila is dependant on an amplification loop mediated by dp53 and JNK. Furthermore, they also demonstrate a mechanism of mutual activation of proapoptotic genes.  相似文献   

3.
Vangelis Kondylis 《FEBS letters》2009,583(23):3827-3838
Historically, Drosophila has been a model organism for studying molecular and developmental biology leading to many important discoveries in this field. More recently, the fruit fly has started to be used to address cell biology issues including studies of the secretory pathway, and more specifically on the functional integrity of the Golgi apparatus. A number of advances have been made that are reviewed below. Furthermore, with the development of RNAi technology, Drosophila tissue culture cells have been used to perform genome-wide screens addressing similar issues. Last, the Golgi function has been involved in specific developmental processes, thus shedding new light on the functions of a number of Golgi proteins.  相似文献   

4.
The effect of RNA interference (RNAi) is generally more potent in Drosophila Schneider 2 (S2) cells than in mammalian cells. In mammalian cells, PolIII promoter-based DNA vectors can be used to express small interfering RNA (siRNA) or short hairpin RNA (shRNA); however, this has not been demonstrated in cultured Drosophila cells. Here we show that shRNAs transcribed from the Drosophila U6 promoter can efficiently trigger gene silencing in S2 cells. By targeting firefly luciferase mRNA, we assessed the efficacy of the shRNAs and examined the structural requirements for highly effective shRNAs. The silencing effect was dependent on the length of the stem region and the sequence of the loop region. Furthermore, we demonstrate that the expression of the endogenous cyclin E protein can be repressed by the U6 promoter-driven shRNAs. Drosophila U6 promoter-based shRNA expression systems may permit stable gene silencing in S2 cells.  相似文献   

5.
p115 tethers coat protein (COP)I vesicles to Golgi membranes. The acidic COOH-terminal domain of p115 links the Golgins, Giantin on COPI vesicles, to GM130 on Golgi membranes. We now show that a SNARE motif-related domain within p115 stimulates the specific assembly of endogenous Golgi SNAREpins containing the t-SNARE, syntaxin 5. p115 catalyzes the construction of a cognate GOS-28-syntaxin-5 (v-/t-SNARE) complex by first linking the SNAREs to promote their direct interaction. These events are essential for NSF-catalyzed reassembly of postmitotic Golgi vesicles and tubules into mature cisternae. Staging experiments reveal that the linking of Golgins precedes SNAREpin assembly. Thus, p115 coordinates sequential tethering and docking of COPI vesicles by first using long tethers (Golgins) and then short tethers (SNAREs).  相似文献   

6.
The vesicle-tethering protein p115 functions in endoplasmic reticulum-Golgi trafficking. We explored the function of homologous region 2 (HR2) of the p115 head domain that is highly homologous with the yeast counterpart, Uso1p. By expression of p115 mutants in p115 knockdown (KD) cells, we found that deletion of HR2 caused an irregular assembly of the Golgi, which consisted of a cluster of mini-stacked Golgi fragments, and gathered around microtubule-organizing center in a microtubule-dependent manner. Protein interaction analyses revealed that p115 HR2 interacted with Cog2, a subunit of the conserved oligomeric Golgi (COG) complex that is known another putative cis-Golgi vesicle-tethering factor. The interaction between p115 and Cog2 was found to be essential for Golgi ribbon reformation after the disruption of the ribbon by p115 KD or brefeldin A treatment and recovery by re-expression of p115 or drug wash out, respectively. The interaction occurred only in interphase cells and not in mitotic cells. These results strongly suggested that p115 plays an important role in the biogenesis and maintenance of the Golgi by interacting with the COG complex on the cis-Golgi in vesicular trafficking.  相似文献   

7.
RNA interference (RNAi) is a fundamental mechanism of gene regulation in a variety of organisms. In Drosophila cells, long double-stranded RNAs (dsRNAs) are processed into 21- to 23-nucleotide double-stranded fragments, termed short interfering RNAs (siRNAs). The siRNAs trigger sequence-specific mRNA degradation, which results in the inhibition of gene expression. These phenomena can be recapitulated in vitro in lysates of Drosophila syncytial blastoderm embryos. In the present work, we used the common Drosophila cell line, Schneider Line 2 (S2), as a source to establish a cell-free translation system. We demonstrate here that the S2 cell-free translation system can recapitulate RNAi. Both long dsRNAs and siRNAs can trigger RNAi in this system, and the silencing effects are significant. This system should provide an important tool for biochemical analyses of the RNAi mechanism.  相似文献   

8.
Axonal guidance signals are transduced through growth cone surface receptors to the interior leading to changes of actin dynamics and actin binding proteins, which are critical in determining the outcome of actin cytoskeleton reorganization. We report here the characterization of the Drosophila actin binding protein abLIM/Unc-115 homolog Dunc-115 and its role in the nervous system. Three Dunc-115 isoforms are identified as Dunc-115L, M and S, respectively. While Dunc-115L is a canonical homolog of Unc-115 with four LIM domains and one villin headpiece domain, Dunc-115M and S are novel isoforms without counterparts in other species. Our molecular modeling shows Dunc-115L is likely to bind to actin. Mutant analysis reveals that Dunc-115 is involved in axonal projection in both the visual and central nervous system.  相似文献   

9.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

10.
Apoptotic cell phagocytosis is initiated through the specific interaction between markers for phagocytosis present at the surface of targets and their receptors of phagocytes. Although many molecules have been proposed to be phagocytosis markers and receptors in mammals, information as to the identity of those molecules is limited for invertebrate animals. Calreticulin, a molecular chaperone that functions in the lumen of the endoplasmic reticulum, was recently reported to be the second general marker, the membrane phospholipid phosphatidylserine being the first, for mammalian apoptotic cells to be recognized by phagocytes. We here asked whether or not calreticulin serves as a marker for phagocytosis in Drosophila. Phagocytosis of apoptotic S2 cells by Drosophila hemocyte-derived l(2)mbn cells, which we previously showed to occur independent of phosphatidylserine, was inhibited by the addition of anti-calreticulin antibody. This inhibition was observed when the target cells, but not phagocytes, were pre-incubated with the antibody. In addition, RNA interference-mediated reduction of calreticulin expression in apoptotic S2 cells, but not in l(2)mbn cells, reduced the level of phagocytosis. An immunocytochemical analysis revealed that calreticulin is widely distributed at the surface of viable S2 cells. After the induction of apoptosis, cell surface calreticulin seemed to form aggregates, with no change in its amount. Furthermore, in embryos of a mutant Drosophila strain that expresses calreticulin at a reduced level, the level of phagocytosis of apoptotic cells was about a half of that observed in embryos of a wild-type strain. These results collectively indicate that calreticulin is the first molecule to be identified as a marker for phagocytosis of apoptotic cells by Drosophila phagocytes.  相似文献   

11.
12.
13.
JAK/STAT signalling in vertebrates is activated by multiple cytokines and growth factors. By contrast, the Drosophila genome encodes for only three related JAK/STAT ligands, Upd, Upd2 and Upd3. Identifying the differences between these three ligands will ultimately lead to a greater understanding of this disease-related signalling pathway and its roles in development. Here, we describe the analysis of the least well characterised of the Upd-like ligands, Upd3. We show that in tissue culture-based assays Upd3-GFP is secreted from cells and appears to interact with the extracellular matrix (ECM) in a similar manner to Upd, while still non-autonomously activating JAK/STAT signalling. Quantification of each of the Upd-like ligands in conditioned media has allowed us to determine the activity of equal amounts of each ligand on JAK/STAT ex vivo and reveals that Upd is the most potent ligand in this system. Finally, investigations into the effects of ectopic expression of Upd3 in vivo have confirmed its ability to activate pathway signalling at long-distance.  相似文献   

14.
15.
The teashirt gene encodes a protein with three widely spaced zinc finger motifs that is crucial for specifying trunk identity in Drosophila embryos. Here, we describe a gene called tiptop, which encodes a protein highly similar to Teashirt. We have analyzed the expression patterns and functions of these two genes in the trunk of the embryo. Initially, teashirt and tiptop expressions are detected in distinct domains; teashirt in the trunk and tiptop in parts of the head and tail. In different mutant situations, we show that, in the trunk and head, they repress each other's expression. Unlike teashirt, we found that deletion of tiptop is homozygous viable and fertile. However, embryos lacking both gene activities display a more severe trunk phenotype than teashirt mutant embryos alone. Ectopic expression of either gene produces an almost identical phenotype, indicating that Teashirt and Tiptop have, on the whole, common activities. We conclude that Teashirt and Tiptop repress each other's expression and that Teashirt has a crucial role for trunk patterning that is in part masked by ectopic expression of Tiptop.  相似文献   

16.
The neuropeptide SIFamide modulates sexual behavior in Drosophila   总被引:1,自引:0,他引:1  
The expression of Drosophila neuropeptide AYRKPPFNGSIFamide (SIFamide) was shown by both immunohistology and in situ hybridization to be restricted to only four neurons of the pars intercerebralis. The role of SIFamide in adult courtship behavior in both sexes was studied using two different approaches to perturb the function of SIFamide; targeted cell ablation and RNA interference (RNAi). Elimination of SIFamide by either of these methods results in promiscuous flies; males perform vigorous and indiscriminant courtship directed at either sex, while females appear sexually hyper-receptive. These results demonstrate that SIFamide is responsible for these behavioral effects and that the four SIFamidergic neurons and arborizations play an important function in the neuronal circuitry controlling Drosophila sexual behavior.  相似文献   

17.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.  相似文献   

18.
19.
The Drosophila CNS develops from the ventral neuroectoderm (VNE) on both sides of the midline along the dorsoventral axis. During early neurogenesis, three homeodomain and Egfr signaling genes are required for the dorsoventral patterning of the VNE. However, the roles of CNS midline cells in patterning of the specific neural lineages are not well understood. Their roles in identity determination and differentiation of the well-established MP2 lineage were studied using several molecular markers. We showed that these cells are essential for identity determination of the MP2 lineage that originates from the VNE. The midline cells and the Egfr signaling genes were also required for the proper maintenance of MP2 and the correct formation of MP2 axonal pathways. Overexpression of sim in the midline cells activated ectopic expression of MP2 markers in the VNE. This analysis suggests that CNS midline cells and Egfr signaling genes play essential roles in the proper establishment and differentiation of the MP2 lineage.  相似文献   

20.
Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号