首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The regulatory-targeting subunit (RGL), also called GM) of the muscle-specific glycogen-associated protein phosphatase PP1G targets the enzyme to glycogen where it modulates the activity of glycogen-metabolizing enzymes. PP1G/RGL has been postulated to play a central role in epinephrine and insulin control of glycogen metabolism via phosphorylation of RGL. To investigate the function of the phosphatase, RGL knockout mice were generated. Animals lacking RGL show no obvious defects. The RGL protein is absent from the skeletal and cardiac muscle of null mutants and present at approximately 50% of the wild-type level in heterozygotes. Both the level and activity of C1 protein are also decreased by approximately 50% in the RGL-deficient mice. In skeletal muscle, the glycogen synthase (GS) activity ratio in the absence and presence of glucose-6-phosphate is reduced from 0.3 in the wild type to 0.1 in the null mutant RGL mice, whereas the phosphorylase activity ratio in the absence and presence of AMP is increased from 0.4 to 0.7. Glycogen accumulation is decreased by approximately 90%. Despite impaired glycogen accumulation in muscle, the animals remain normoglycemic. Glucose tolerance and insulin responsiveness are identical in wild-type and knockout mice, as are basal and insulin-stimulated glucose uptakes in skeletal muscle. Most importantly, insulin activated GS in both wild-type and RGL null mutant mice and stimulated a GS-specific protein phosphatase in both groups. These results demonstrate that RGL is genetically linked to glycogen metabolism, since its loss decreases PP1 and basal GS activities and glycogen accumulation. However, PP1G/RGL is not required for insulin activation of GS in skeletal muscle, and rather another GS-specific phosphatase appears to be involved.  相似文献   

2.
Protein phosphatase-1 (PP1) plays an important role in the regulation of glycogen synthesis by insulin. Protein targeting to glycogen (PTG) enhances glycogen accumulation by increasing PP1 activity against glycogen-metabolizing enzymes. However, the specificity of PTG's effects on cellular dephosphorylation and glucose metabolism is unclear. Overexpression of PTG in 3T3-L1 adipocytes using a doxycycline-controllable adenoviral construct resulted in a 10-20-fold increase in PTG levels and an 8-fold increase in glycogen levels. Inclusion of 1 microg/ml doxycycline in the media suppressed PTG expression, and fully reversed all PTG-dependent effects. Infection of 3T3-L1 adipocytes with the PTG adenovirus caused a marked dephosphorylation and activation of glycogen synthase. The effects of PTG seemed specific, because basal and insulin-stimulated phosphorylation of a variety of signaling proteins was unaffected. Indeed, glycogen synthase was the predominant protein whose phosphorylation state was decreased in 32P-labeled cells. PTG overexpression did not alter PP1 protein levels but increased PP1 activity 6-fold against phosphorylase in vitro. In contrast, there was no change in PP1 activity measured using myelin basic protein, suggesting that PTG overexpression specifically directed PP1 activity against glycogen-metabolizing enzymes. To investigate the metabolic consequences of altering PTG levels, glucose uptake and storage in 3T3-L1 adipocytes was measured. PTG overexpression did not affect 2-deoxy-glucose transport rates in basal and insulin-stimulated cells but dramatically enhanced glycogen synthesis rates under both conditions. Despite the large increases in cellular glucose flux upon PTG overexpression, basal and insulin-stimulated glucose incorporation into lipid were unchanged. Cumulatively, these data indicate that PTG overexpression in 3T3-L1 adipocytes discretely stimulates PP1 activity against glycogen synthase and phosphorylase, resulting in a marked and specific increase in glucose uptake and storage as glycogen.  相似文献   

3.
Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity.  相似文献   

4.
Glycogen-targeting PP1 (protein phosphatase 1) subunit G(L) (coded for by the PPP1R3B gene) is expressed in human, but not rodent, skeletal muscle. Its effects on muscle glycogen metabolism are unknown. We show that G(L) mRNA levels in primary cultured human myotubes are similar to those in freshly excised muscle, unlike subunits G(M) (gene PPP1R3A) or PTG (protein targeting to glycogen; gene PPP1R3C), which decrease strikingly. In cultured myotubes, expression of the genes coding for G(L), G(M) and PTG is not regulated by glucose or insulin. Overexpression of G(L) activates myotube GS (glycogen synthase), glycogenesis in glucose-replete and -depleted cells and glycogen accumulation. Compared with overexpressed G(M), G(L) has a more potent activating effect on glycogenesis, while marked enhancement of their combined action is only observed in glucose-replete cells. G(L) does not affect GP (glycogen phosphorylase) activity, while co-overexpression with muscle GP impairs G(L) activation of GS in glucose-replete cells. G(L) enhances long-term glycogenesis additively to glucose depletion and insulin, although G(L) does not change the phosphorylation of GSK3 (GS kinase 3) on Ser9 or its upstream regulator kinase Akt/protein kinase B on Ser473, nor its response to insulin. In conclusion, in cultured human myotubes, the G(L) gene is expressed as in muscle tissue and is unresponsive to glucose or insulin, as are G(M) and PTG genes. G(L) activates GS regardless of glucose, does not regulate GP and stimulates glycogenesis in combination with insulin and glucose depletion.  相似文献   

5.
Mora A  Sakamoto K  McManus EJ  Alessi DR 《FEBS letters》2005,579(17):3632-3638
In order to investigate the importance of the PDK1-PKB-GSK3 signalling network in regulating glycogen synthase (GS) in the heart, we have employed tissue specific conditional knockout mice lacking PDK1 in muscle (mPDK1-/-), as well as knockin mice in which the protein kinase B (PKB) phosphorylation site on glycogen synthase kinase-3alpha (GSK3alpha) (Ser21) and GSK3beta (Ser9) is changed to Ala. We demonstrate that in hearts from mPDK1-/- or double GSK3alpha/GSK3beta knockin mice, insulin failed to stimulate the activity of GS or induce its dephosphorylation at residues that are phosphorylated by GSK3. We also establish that in the heart, both GSK3 isoforms participate in the regulation of GS, with GSK3beta playing a more prominent role. This contrasts with skeletal muscle where GSK3beta is the major regulator of insulin-induced GS activity. Despite the inability of insulin to stimulate glycogen synthesis in hearts from the mPDK1-/- or double GSK3alpha/GSK3beta knockin mice, these animals possessed normal levels of cardiac glycogen, demonstrating that total glycogen levels are regulated independently of insulin's ability to stimulate GS in the heart and that mechanisms such as allosteric activation of GS by glucose-6-phosphate and/or activation of GS by muscle contraction, could operate to maintain normal glycogen levels in these mice. We also demonstrate that in cardiomyocytes derived from the mPDK1-/- hearts, although the levels of glucose transporter type 4 (GLUT4) are increased 2-fold, insulin failed to stimulate glucose uptake, providing genetic evidence that PDK1 plays a crucial role in enabling insulin to promote glucose uptake in cardiac muscle.  相似文献   

6.
The activation of protein phosphastase-1 (PP1) by insulin plays a critical role in the regulation of glycogen metabolism. PTG is a PP1 glycogen-targeting protein, which also binds the PP1 substrates glycogen synthase, glycogen phosphorylase, and phosphorylase kinase (Printen, J. A., Brady, M. J., and Saltiel, A. R. (1997) Science 275, 1475-1478). Through a combination of deletion analysis and site-directed mutagenesis, the regions on PTG responsible for binding PP1 and its substrates have been delineated. Mutagenesis of Val-62 and Phe-64 in the highly conserved (K/R)VXF PP1-binding motif to alanine was sufficient to ablate PP1 binding to PTG. Phosphorylase kinase, glycogen synthase, and phosphorylase binding all mapped to the same C-terminal region of PTG. Mutagenesis of Asp-225 and Glu-228 to alanine completely blocked the interaction between PTG and these three enzymes, without affecting PP1 binding. Disruption of either PP1 or substrate binding to PTG blocked the stimulation of PP1 activity in vitro against phosphorylase, indicating that both binding sites may be important in PTG action. Transient overexpression of wild-type PTG in Chinese hamster ovary cells overexpressing the insulin receptor caused a 50-fold increase in glycogen levels. Expression of PTG mutants that do not bind PP1 had no effect on glycogen accumulation, indicating that PP1 targeting is essential for PTG function. Likewise, expression of the PTG mutants that do not bind PP1 substrates did not increase glycogen levels, indicating that PP1 targeting glycogen is not sufficient for the metabolic effects of PTG. These results cumulatively demonstrate that PTG serves as a molecular scaffold, allowing PP1 to recognize its substrates at the glycogen particle.  相似文献   

7.
Overexpression of the protein phosphatase 1 (PP1) subunit protein targeting to glycogen (PTG) markedly enhances cellular glycogen levels. In order to disrupt the endogenous PTG-PP1 complex, small interfering RNA (siRNA) constructs against PTG were identified. Infection of 3T3-L1 adipocytes with PTG siRNA adenovirus decreased PTG mRNA and protein levels by >90%. In parallel, PTG reduction resulted in a >85% decrease in glycogen levels 4 days after infection, supporting a critical role for PTG in glycogen metabolism. Total PP1, glycogen synthase, and GLUT4 levels, as well as insulin-stimulated signaling cascades, were unaffected. However, PTG knockdown reduced glycogen-targeted PP1 protein levels, corresponding to decreased cellular glycogen synthase- and phosphorylase-directed PP1 activity. Interestingly, GLUT1 levels and acute insulin-stimulated glycogen synthesis rates were increased two- to threefold, and glycogen synthase activation in the presence of extracellular glucose was maintained. In contrast, glycogenolysis rates were markedly increased, suggesting that PTG primarily acts to suppress glycogen breakdown. Cumulatively, these data indicate that disruption of PTG expression resulted in the uncoupling of PP1 activity from glycogen metabolizing enzymes, the enhancement of glycogenolysis, and a dramatic decrease in cellular glycogen levels. Further, they suggest that reduction of glycogen stores induced cellular compensation by several mechanisms, but ultimately these changes could not overcome the loss of PTG expression.  相似文献   

8.
There is growing evidence that glycogen targeting subunits of protein phosphatase-1 play a critical role in regulation of glycogen metabolism. In the current study, we have investigated the effects of adenovirus-mediated overexpression of a specific glycogen targeting subunit known as protein targeting to glycogen (PTG) in cultured human muscle cells. PTG was overexpressed both in muscle cells cultured at high glucose (glycogen replete) or in cells incubated for 18 h in the absence of glucose and then incubated in high glucose (glycogen re-synthesizing). In both glycogen replete and glycogen resynthesizing cells, PTG overexpression caused glycogen to be synthesized at a linear rate 1-5 days after viral treatment, while in cells treated with a virus lacking a cDNA insert (control virus), glycogen content reached a plateau at day 1 with no further increase. In the glycogen replete PTG overexpressing cells, glycogen content was 20 times that in controls at day 5. Furthermore, in cells undergoing glycogen resynthesis, PTG overexpression caused a doubling of the initial rate of glycogen synthesis over the first 24 h relative to cells treated with control virus. In both sets of experiments, the effects of PTG on glycogen synthesis were correlated with a 2-3-fold increase in glycogen synthase activity state, with no changes in glycogen phosphorylase activity. The alterations in glycogen synthase activity were not accompanied by changes in the intracellular concentration of glucose 6-phosphate. We conclude that PTG overexpression activates glycogen synthesis in a glucose 6-phosphate-independent manner in human muscle cells while overriding glycogen-mediated inhibition. Our findings suggest that modulation of PTG expression in muscle may be a mechanism for enhancing muscle glucose disposal and improving glucose tolerance in diabetes.  相似文献   

9.
The glycogen-associated protein phosphatase (PP1G/ R(GL))may play a central role in the hormonal control of glycogen metabolism in the skeletal muscle. Here, we investigated the in vivo epinephrine effect of glycogen metabolism in the skeletal muscle of the wild-type and R(GL) knockout mice. The administration of epinephrine increased blood glucose levels from 200 +/- +/- 20 to 325 +/- 20 mg/dl in both wild-type and knockout mice. Epinephrine decreased the glycogen synthase -/+ G6P ratio from 0.24 +/- 0.04 to 0.10 +/- 0.02 in the wild-type, and from 0.17 +/- 0.02 to 0.06 +/- 0.01 in the knockout mice. Conversely, the glycogen phosphorylase activity ratio increased from 0.21 +/- 0.04 to 0.65 +/- 0.07 and from 0.30 +/- 0.04 to 0.81 +/- 0.06 in the epinephrine treated wild-type and knockout mice respectively. The glycogen content of the knockout mice was substantially lower (27 percent) than that of both wild-type mice; and epinephrine decreased glycogen content in the wild-type and knockout mice. Also, in Western blot analysis there was no compensation of the other glycogen targeting components PTG/R5 and R6 in the knockout mice compared with the wild-type. Therefore, R(GL) is not required for the epinephrine stimulation of glycogen metabolism, and rather another phosphatase and/or regulatory subunit appears to be involved.  相似文献   

10.
Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6-P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3 alpha and -beta genes are replaced with mutant forms (GSK3 alpha/beta S21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3 alpha/beta S21A/S21A/S9A/S9A mice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6-P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6-P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.  相似文献   

11.
Expression of the glycogen-targeting protein PTG promotes glycogen synthase activation and glycogen storage in various cell types. In this study, we tested the contribution of phosphorylase inactivation to the glycogenic action of PTG in hepatocytes by using a selective inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a and sequential activation of glycogen synthase. Similar to CP-91194, graded expression of PTG caused a concentration-dependent inactivation of phosphorylase and activation of glycogen synthase. The latter was partially counter-acted by the expression of muscle phosphorylase and was not additive with the activation by CP-91149, indicating that it is in part secondary to the inactivation of phosphorylase. PTG expression caused greater stimulation of glycogen synthesis and translocation of glycogen synthase than CP-91149, and the translocation of synthase could not be explained by accumulation of glycogen, supporting an additional role for glycogen synthase translocation in the glycogenic action of PTG. The effects of PTG expression on glycogen synthase and glycogen synthesis were additive with the effects of glucokinase expression, confirming the complementary roles of depletion of phosphorylase a (a negative modulator) and elevated glucose 6-phosphate (a positive modulator) in potentiating the activation of glycogen synthase. PTG expression mimicked the inactivation of phosphorylase caused by high glucose and counteracted the activation caused by glucagon. The latter suggests a possible additional role for PTG on phosphorylase kinase inactivation.  相似文献   

12.
The influences of host feeding and the availability of glucose in vitro on the activities of glycogen synthase and glycogen phosphorylase in Hymenolepis diminuta and in Vampirolepis microstoma were studied. The worms were recovered from hosts that had been fed ad libitum, starved for 24 hr, or starved 24 hr and then refed for 1 hr immediately prior to worm recovery. The ratios of active to inactive glycogen synthase and phosphorylase were correlated with the host feeding regimen prior to recovery. Glycogen synthase in H. diminuta was predominately in the inactive D form in worms from both fed and fasted hosts. One hour after refeeding, up to 80% of the synthase was in the active I form. Phosphorylase in H. diminuta was predominantly in the active a form in worms from fed and fasted hosts, but activity of this enzyme was suppressed in worms from refed hosts. When H. diminuta from fasted hosts was incubated in a balanced salt solution containing 40 mM glucose, glycogen synthase I increased, and phosphorylase a decreased. Glycogen synthase in V. microstoma was predominantly in the inactive D form in worms from both the fed and fasted hosts, but the proportion in the active I form increased to over half the total synthase by 1 hr of host refeeding. The proportion of glycogen phosphorylase a was high in worms from fed hosts and decreased, but not dramatically, in worms from fasted hosts. The results suggested that the worms had access to another source of glucose, probably from the host bile, and we measured a low but significant concentration of carbohydrate in the gall bladder bile of mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Modulation of the expression of the protein phosphatase‐1 (PP1) glycogen‐targeting subunit PTG exerts profound effects on cellular glycogen metabolism in vitro and in vivo. PTG contains three distinct binding domains for glycogen, PP1, and a common site for glycogen synthase and phosphorylase. The impact of disrupting the PP1‐binding domain on PTG function was examined in 3T3–L1 adipocytes. A full‐length PTG mutant was generated as an adenoviral construct in which the valine and phenylalanine residues in the conserved PP1‐binding domain were mutated to alanine (PTG‐VF). Infection of fully differentiated 3T3–L1 adipocytes with the PTG‐VF adenovirus reduced glycogen stores by over 50%. In vitro, PTG‐VF competitively interfered with wild‐type PTG action, suggesting that the mutant construct acted as a dominant‐negative molecule. The reduction in cellular glycogen storage was due to a significantly increased rate of glycogen turnover. Interestingly, acute basal and insulin‐stimulated glucose uptake and glycogen synthesis rates were enhanced in PTG‐VF expressing cells vs. control 3T3–L1 adipocytes, likely as a compensatory response to the loss of glycogen stores. These results indicate that the mutation of the PP1‐binding domain on PTG resulted in the generation of a dominant‐negative molecule that impeded endogenous PTG action and reduced cellular glycogen levels, through enhancement of glycogenolysis rather than impairment of glycogen synthesis.  相似文献   

14.
15.
Adrenaline and insulin are the major hormones regulating glycogen metabolism in skeletal muscle. We have investigated the effects of these hormones on the rate-limiting enzymes of glycogen degradation and synthesis (phosphorylase and glycogen synthase respectively) in GM-/- mice homozygous for a null allele of the major skeletal muscle glycogen targeting subunit (GM) of protein phosphatase 1 (PP1). Hyperphosphorylation of Ser14 in phosphorylase, and Ser7, Ser640 and Ser640/644 of GS, in the skeletal muscle of GM-/- mice compared with GM+/+ mice indicates that the PP1-GM complex is the major phosphatase that dephosphorylates these sites in vivo. Adrenaline caused a 2.4-fold increase in the phosphorylase (-/+AMP) activity ratio in the skeletal muscle of control mice compared to a 1.4 fold increase in GM-/- mice. Adrenaline also elicited a 67% decrease in the GS (-/+G6P) activity ratio in control mice but only a small decrease in the skeletal muscle of GM-/- mice indicating that GM is required for the full response of phosphorylase and GS to adrenaline. PP1-GM activity and the amount of PP1 bound to GM decreased 40% and 45% respectively, in response to adrenaline in control mice. The data support a model in which adrenaline stimulates phosphorylation of phosphorylase Ser14 and GS Ser7 in GM+/+ mice by both kinase activation and PP1-GM inhibition and the phosphorylation of GS Ser640 and Ser640/644 by PP1-GM inhibition alone. Insulin decreased the phosphorylation of GS Ser640 and Ser640/644 and stimulated the GS (-/+G6P) activity ratio by approximately 2-fold in the skeletal muscle of either GM-/- and or control mice, but the low basal and insulin stimulated GS activity ratios in GM-/- mice indicate that PP1-GM is essential for maintaining normal basal and maximum insulin stimulated GS activity ratios in vivo.  相似文献   

16.
Glycogen Metabolism in Bovine Adrenal Medulla   总被引:3,自引:2,他引:1  
Abstract: Glycogen content was determined both in whole adrenal medullary tissue and in isolated adrenal chromaffin cells, in which it responds to glucose deprivation and restoration. [14C]glucose incorporation into glycogen in isolated adrenal chromaffin cells is increased by previous glucose deprivation ("fasting"). Total glycogen synthase activities are 452 ± 66 mU/g in whole tissue and 305 ± 108 mU/g in isolated cells. The K m of glycogen synthase for UDP-glucose is 0.67 mM with 13 m m glucose-6-phosphate and 1 m m without this effector. The in vitro inactivation process of glycogen synthase a has been found to be mainly cyclic AMP-dependent, but it also responds to Ca2+. Total glycogen phosphorylase activities are 8.69 ± 1.26 U/g in whole tissue and 2.38 ± 0.30 U/g in isolated cells. The requirements for interconversion in vitro of both glycogen synthase and phosphorylase suggest a system similar to that of other tissues. During incubation of isolated adrenal chromaffin cells with 5 m m -glucose, phosphorylase a activity decreases and synthase a activity increases; these changes are more marked in "fasted" cells. Glycogen content and glycogen synthase and phosphorylase activities are higher in the adrenal medulla than in the brain, suggesting a greater metabolic role of glycogen in the adrenal medulla.  相似文献   

17.
The time course of glycogen changes in soleus muscle recovering from 3 days of nonweight bearing by hindlimb suspension was investigated. Within 15 min and up to 2 h, muscle glycogen decreased. Coincidentally, muscle glucose 6-phosphate and the fractional activity of glycogen phosphorylase, measured at the fresh muscle concentrations of AMP, increased. Increased fractional activity of glycogen synthase during this time was likely the result of greater glucose 6-phosphate and decreased glycogen. From 2 to 4 h, when the synthase activity remained elevated and the phosphorylase activity declined, glycogen levels increased (glycogen supercompensation). A further increase of glycogen up to 24 h did not correlate with the enzyme activities. Between 24 and 72 h, glycogen decreased to control values, possibly initiated by high phosphorylase activity at 24 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that reloading transiently uncoupled glycogen control of this enzyme. These data suggest that the activities of glycogen synthase and phosphorylase, when measured at physiological effector levels, likely provide the closest approximation to the actual enzyme activities in vivo. Measurements made in this way effectively explained the majority of the changes in the soleus glycogen content during recovery from nonweight bearing.  相似文献   

18.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

19.
In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol. Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction, in vivo treadmill running and in situ electrical stimulation. Both procedures resulted in a 2-fold increase in the GS -/+ glucose-6-P activity ratio in WT mice, but this response was completely absent in the KO mice. The KO mice, which also have a reduced GS activity associated with significantly reduced basal glycogen levels, exhibited impaired maximal exercise capacity, but contraction-induced activation of glucose transport was unaffected. The R(GL) OE mice are characterized by enhanced GS activity ratio and an approximately 3-4-fold increase in glycogen content in skeletal muscle. These animals were able to tolerate exercise normally. Stimulation of GS and glucose uptake following muscle contraction was not significantly different as compared with WT littermates. These results indicate that although PP1G/R(GL) is not necessary for activation of GS by insulin, it is essential for regulation of glycogen metabolism under basal conditions and in response to contractile activity, and may explain the reduced muscle glycogen content in the R(GL) KO mice, despite the normal insulin activation of GS.  相似文献   

20.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号