首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ebola virus (EBOV) gained public notoriety in the last decade largely as a consequence of the highly publicized isolation of a new EBOV species in a suburb of Washington, DC, in 1989, together with the dramatic clinical presentation of EBOV infection and high case-fatality rate in Africa (near 90% in some outbreaks), and the unusual and striking morphology of the virus. Furthermore, there are no vaccines or effective therapies currently available. Progress in understanding the origins of the pathophysiological changes that make EBOV infections of humans so devastating has been slow, primarily because these viruses require special containment for safe research. However, an increasing understanding of the mechanisms of EBOV pathogenesis, facilitated by the development of new tools to elucidate critical regulatory elements in the viral life cycle, is providing new targets that can be exploited for therapeutic interventions. Notably, identifying factors triggering the haemorrhagic complications that characterise EBOV infections led to the development of a strategy to modulate coagulopathy; this therapeutic modality successfully mitigated the effects of EBOV haemorrhagic fever in nonhuman primates. This review summarises our current understanding of EBOV pathogenesis and discusses various approaches to therapeutic intervention based on our current understanding of how EBOV produces a lethal infection.  相似文献   

2.
Emergence of human immunodeficiency viruses HIV-1 and HIV-2 results from interspecies transmission from simian viruses SIV. SIVcpzPtt infecting chimpanzees, and from which the HIV-1 (subgroups M and N) is derived is still found in the Pan troglodytes troglodytes population of south Cameroon chimpanzees. The ancestor of HIV-1 group O, is found in the Gorilla residing in Western Africa, but chimpanzees are in fact the initial reservoir of the SIV viruses SIVgor, and it is still unclear whether the group O HIV-1 has been transmitted to humans by gorillas and/or chimpanzees. At least eight interspecies transmissions between and humans implicating SIVsmm (from sooty mangabey monkeys) have occurred, corresponding to the eight VIH-2 groups. Since habits of hunting and meat preparation in the bush still persistently expose humans in Africa to SIV infection, new interspecies transmission of these viruses remains a possibility.  相似文献   

3.
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic‐resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant‐based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant‐based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant‐based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.  相似文献   

4.
The oncogenic Merkel cell polyomavirus (MCPyV) infects humans worldwide, but little is known about the occurrence of viruses related to MCPyV in the closest phylogenetic relatives of humans, great apes. We analyzed samples from 30 wild chimpanzees and one captive gorilla and identified two new groups of polyomaviruses (PyVs). These new viruses are by far the closest relatives to MCPyV described to date, providing the first evidence of the natural occurrence of PyVs related to MCPyV in wild great apes. Similar to MCPyV, the prevalence of these viruses is relatively high (>30%). This, together with the fact that humans in West and Central Africa frequently hunt and butcher primates, may point toward further MCPyV-like strains spreading to, or already existing in, our species.  相似文献   

5.
Scientific barriers to developing vaccines against avian influenza viruses   总被引:1,自引:0,他引:1  
The increasing number of reports of direct transmission of avian influenza viruses to humans underscores the need for control strategies to prevent an influenza pandemic. Vaccination is the key strategy to prevent severe illness and death from pandemic influenza. Despite long-term experience with vaccines against human influenza viruses, researchers face several additional challenges in developing human vaccines against avian influenza viruses. In this Review, we discuss the features of avian influenza viruses, the gaps in our understanding of infections caused by these viruses in humans and of the immune response to them that distinguishes them from human influenza viruses, and the current status of vaccine development.  相似文献   

6.
We report the frequencies of a deletion polymorphism at the alpha 2 (1) collagen gene (COL1A2) and argue that this distribution has major implications for understanding the evolution of modern humans immediately after their exodus from sub-Saharan Africa as well as their subsequent spread to all continents. The high frequency of the deletion in non-African populations and its complete absence in sub-Saharan African groups suggest that the deletion event occurred just before or shortly after modern humans left Africa. The deletion probably arose shortly after the African exodus in a group whose descendants were among the ancestors of all contemporary populations, except for sub-Saharan Africans. This, of course, does not imply that there was a single migration out of Africa. The GM immunoglobulin haplotype GM*A,X G displays a similar distribution to that for the COL1A2 deletion, and these 2 polymorphisms suggest that the exodus from Africa may not have been a rapid dispersion to all other regions of the world. Instead, it may have involved a period of time for the savanna-derived gene pool to adapt to novel selective agents, such as bacteria, viruses, and/or environmental xenobiotics found in both animal and plant foods in their new environment. In this context these polymorphisms are indicators of the evolution that occurred before the diaspora of these populations to the current distribution of modern peoples.  相似文献   

7.
Flaviviruses are a group of small RNA viruses that cause severe disease in humans worldwide and are the target of several vaccine development programs. A primary goal of these efforts is to elicit a protective humoral response directed against the envelope proteins arrayed on the surface of the flavivirus virion. Advances in the structural biology of these viruses has catalyzed rapid progress toward understanding the complexity of the flavivirus immunogen and the molecular basis of antibody-mediated neutralization. These insights have identified factors that govern the potency of neutralizing antibodies and will inform the design and evaluation of novel vaccines.  相似文献   

8.
9.
Wang S  Hackett A  Jia N  Zhang C  Zhang L  Parker C  Zhou A  Li J  Cao WC  Huang Z  Li Y  Lu S 《PloS one》2011,6(12):e28757
Highly pathogenic avian influenza A (HPAI) H5N1 viruses are circulating among poultry populations in parts of Asia, Africa, and the Middle East, and have caused human infections with a high mortality rate. H5 subtype hemagglutinin (HA) has evolved into phylogenetically distinct clades and subclades based on viruses isolated from various avian species. Since 1997, humans have been infected by HPAI H5N1 viruses from several clades. It is, therefore, important to develop strategies to produce protective antibody responses against H5N1 viruses from multiple clades or antigenic groups. In the current study, we optimized the signal peptide design of DNA vaccines expressing HA antigens from H5N1 viruses. Cross reactivity analysis using sera from immunized rabbits showed that antibody responses elicited by a polyvalent formulation, including HA antigens from different clades, was able to elicit broad protective antibody responses against multiple key representative H5N1 viruses across different clades. Data presented in this report support the development of a polyvalent DNA vaccine strategy against the threat of a potential H5N1 influenza pandemic.  相似文献   

10.
Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.  相似文献   

11.
Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently.  相似文献   

12.
The origins of acquired immune deficiency syndrome viruses: where and when?   总被引:10,自引:0,他引:10  
In the absence of direct epidemiological evidence, molecular evolutionary studies of primate lentiviruses provide the most definitive information about the origins of human immunodeficiency virus (HIV)-1 and HIV-2. Related lentiviruses have been found infecting numerous species of primates in sub-Saharan Africa. The only species naturally infected with viruses closely related to HIV-2 is the sooty mangabey (Cercocebus atys) from western Africa, the region where HIV-2 is known to be endemic. Similarly, the only viruses very closely related to HIV-1 have been isolated from chimpanzees (Pan troglodytes), and in particular those from western equatorial Africa, again coinciding with the region that appears to be the hearth of the HIV-1 pandemic. HIV-1 and HIV-2 have each arisen several times: in the case of HIV-1, the three groups (M, N and O) are the result of independent cross-species transmission events. Consistent with the phylogenetic position of a 'fossil' virus from 1959, molecular clock analyses using realistic models of HIV-1 sequence evolution place the last common ancestor of the M group prior to 1940, and several lines of evidence indicate that the jump from chimpanzees to humans occurred before then. Both the inferred geographical origin of HIV-1 and the timing of the cross-species transmission are inconsistent with the suggestion that oral polio vaccines, putatively contaminated with viruses from chimpanzees in eastern equatorial Africa in the late 1950s, could be responsible for the origin of acquired immune deficiency syndrome.  相似文献   

13.
14.
The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.  相似文献   

15.
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies in humans and in most cases a consequence of chronic infection of the liver by hepatotropic viruses (Hepatitis B Virus (HBV) and possibly Hepatitis C Virus (HCV)). Formation of HCC results from a stepwise process involving different preneoplastic lesions that reflect multiple genetic events, like protooncogene activation, tumor suppressor gene inactivation, and growth factor overor reexpression. Recent investigations have gained new insights into how these factors are activated and may interact. In addition, improved knowledge of the molecular biology of HBV has led to better understanding of its pleiotropic effects on induction and progression in hepatocarcinogenesis  相似文献   

16.
The idea of an evolutionary sequence for humans is quite recent. Over the last 150 years, we have discovered unexpected ancestors, numerous close relatives and our deep evolutionary roots in Africa. In the last decade, three Late Miocene hominids have been described, two about 6 Ma (Ardipithecus and Orrorin) in East Africa and the third dated to about 7 Ma (Sahelanthropus) in Central Africa. The specimens are too few to propose definite relationship to other species, but clearly these belong to a new evolutive grade distinct from Australopithecus and Homo. Moreover, all of them were probably habitual bipeds and lived in woodlands, thus falsifying the savannah hypothesis of human origins. In light of all this recent knowledge, Charles Darwin predicted correctly in 1871 that Africa is the birthplace of humans, chimpanzees and our close relatives.  相似文献   

17.
Non-human primates represent a valuable resource for testing potential vaccines candidates and drugs for human use. Malaria remains one of the greatest burdens for the humanity represented by approximately 500 million new clinical cases per year worldwide and at least two million deaths caused annually. Additional control measures such as vaccines and new anti-malarial compounds are therefore urgently needed. Safety and protective efficacy studies in animal models are critical steps for vaccines and drugs development and primate models are probably the most appropriate for this purpose. Although Aotus genus provides several species susceptible to both Plasmodium falciparum and Plasmodium vivax, having different susceptibility to malaria, Aotus lemurinus griseimembra represents the best current malaria primate model because of its high susceptibility to infection by blood forms and sporozoites of both species of Plasmodium. Although the ultimate validation of this model depends upon human trials, over the past two decades these monkeys have proved very useful to test multiple malaria vaccine candidates prior to trials in humans. A good correlation between the B- and T-cell epitopes recognised by humans and by immunised monkeys has been documented, and cross reactivity between reagents for human and Aotus cytokines and lymphocyte markers have been identified and are facilitating the selection of vaccine candidates for clinical trials. Aotus also represents a good model for the screening of anti-malarial drugs and the understanding of malaria pathogenesis as well. In view of the decreasing availability of these primates, breeding programs and biomedical research facilities must be improved in countries of primate origin.  相似文献   

18.
19.
Among the flaviviruses, dengue, with its four serotypes, has spread throughout the tropics. The most advanced vaccines developed so far include live attenuated viruses, which have been tested in humans but none has been licensed. Preclinical testing of dengue vaccine candidates is performed initially in mice and in nonhuman primates. In the latter the main criteria used to assay protection are neutralizing antibodies elicited by the vaccine candidate and the magnitude and duration of peripheral viremia upon challenge of previously immunized animals. Towards the identification of wild-type viruses that could be used in challenge experiments a total of 31 rhesus monkeys were inoculated subcutaneously of wild dengue types 1, 2, and 3 viruses. The viremia caused by the different viruses was variable but it was possible to identify dengue viruses useful as challenge strains.  相似文献   

20.
Rift Valley fever (RVF) virus is a mosquito-borne RNA virus responsible for large explosive outbreaks of acute febrile disease in humans and livestock in Africa with significant mortality and economic impact. The successful high-throughput generation of the complete genome sequence was achieved for 33 diverse RVF virus strains collected from throughout Africa and Saudi Arabia from 1944 to 2000, including strains differing in pathogenicity in disease models. While several distinct virus genetic lineages were determined, which approximately correlate with geographic origin, multiple exceptions indicative of long-distance virus movement have been found. Virus strains isolated within an epidemic (e.g., Mauritania, 1987, or Egypt, 1977 to 1978) exhibit little diversity, while those in enzootic settings (e.g., 1970s Zimbabwe) can be highly diverse. In addition, the large Saudi Arabian RVF outbreak in 2000 appears to have involved virus introduction from East Africa, based on the close ancestral relationship of a 1998 East African virus. Virus genetic diversity was low (~5%) and primarily involved accumulation of mutations at an average of 2.9 × 10−4 substitutions/site/year, although some evidence of RNA segment reassortment was found. Bayesian analysis of current RVF virus genetic diversity places the most recent common ancestor of these viruses in the late 1800s, the colonial period in Africa, a time of dramatic changes in agricultural practices and introduction of nonindigenous livestock breeds. In addition to insights into the evolution and ecology of RVF virus, these genomic data also provide a foundation for the design of molecular detection assays and prototype vaccines useful in combating this important disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号