首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metabolism and activation of 1-nitropyrene (1-NP) to reactive intermediates by lung microsomes and isolated lung cells was studied. Mutagenicity of 1-NP metabolites was assayed in Salmonella typhimurium TA98NR, a strain lacking a major component of nitroreductase activity. In the presence of NADPH, microsomes from rabbit, rat and hamster lung metabolized 1-NP to mutagenic products to a similar degree. Pretreatment with a mixture of polychlorinated biphenyls (PCB) decreased the formation of mutagenic metabolites by rabbit lung microsomes, but did not affect the production of mutagens by rat or hamster lung microsomes. 3H-1-NP was metabolized to covalently bound protein products at a rate of 82 and 10 pmol/mg by rabbit and hamster lung microsomes, respectively, whereas no binding was detected in rat lung microsomes. PCB-pretreatment increased covalent protein binding of 3 H-1-NP in lung microsomes from hamster and rat, but decreased the binding in rabbit lung microsomes. High performance liquid chromatography analysis indicated that 3H-1-NP was readily converted to ring-hydroxylated products by rabbit and hamster lung microsomes; the rate was much lower with rat lung microsomes. 3H-1-NP was activated to metabolites that covalently bound to protein in isolated rabbit lung cells, with the following rates being observed: Clara cells > lung digest > type II cells. In contrast, covalent protein binding in cells isolated from rat lung was very low. 1-NP was not activated to products mutagenic for S. typhimurium TA 98 N R when co-incubated with cells isolated either from rabbit or rat lung.Abbreviations 1-AP 1-aminopyrene - DMSO dimethyl sulfoxide - EGTA ethylene glycol-bis(ß-aminoethyl ether) - EM electron microscopy - HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid - HPBS HEPES-phosphate-buffered-saline - HPLC high performance liquid chromatography - NBT nitroblue tetrazolium - 1-NP 1-nitropyrene - 1-NP-4,5-diol trans-4,5-dihydro-4,5-dihydroxy-1-nitropyrene - 1-NP-9,10-diol trans-9,10-dihydro-9,10-dihydroxy-1-nitropyrene - 1-NP-4,5-oxide 1-nitropyrene-4,5-oxide - 1-NP-9,10-oxide 1-nitropyrene-9,10-oxide - 3-OH-1-NP 3-hydroxy-1-nitropyrene - 6-/8-OH-1-NP a mixture of 6- and 8-hydroxy-1-nitropyrene - PBS phosphate-buffered saline - PCB a mixture of polychlorinated biphenyls (Aroclor 1254) - TLC thin layer chromatography  相似文献   

2.
Genotoxicity of a variety of nitroarenes and other compounds was examined in DNA-repair tests with rat or mouse hepatocytes. Out of 15 nitroarenes tested, 9 compounds, i.e., 1-nitropyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 1-nitro-3-acetoxypyrene, 3-nitrofluoranthene, 2-nitrofluorene, 2,7-di-nitrofluorene and 5-nitroacenaphthene elicited positive response of DNA repair in the tests with rat and mouse hepatocytes. Among the positive chemicals, the DNA-repair level of the 3 dinitropyrene isomers was much higher than other nitroarenes. The results indicate that a number of nitroarenes are metabolically activated in the primary culture of rodent hepatocytes, and suggest potential carcinogenicity of 1-nitropyrene and 1-nitro-3-acetoxypyrene the carcinogenicity of which is either not clear or unknown. Of the other nitro compounds, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide as well as 4-nitroquinoline 1-oxide were clearly genotoxic in the assays with hepatocytes of both species. However, 5-nitro-2-furaldehyde semicarbazone was negative in both assays with hepatocytes of 2 species.  相似文献   

3.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.

The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   


4.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   

5.
Incubation of benzo[alpha] pyrene 4,5-oxide with poly(G) in neutral aqueous ethanol resulted in the formation of covalent adducts and in the production of free 4-hydroxybenzo[alpha]pyrene. This phenol, which was identified by its UV spectral properties and by its chromatographic characteristics, was also formed but at a much slower rate when the epoxide was incubated with DNA or with GMP. Phenol formation was not detected when benzo[alpha]-pyrene 4,5-oxide was incubated for prolonged periods in the presence of poly(A), poly(C) or poly(U) or in the absence of nucleic acid. Formation of 4-hydroxybenzo[alpha] pyrene from the epoxide in the presence of poly(G) was not accompanied by detectable base modifications or by breakage of phosphodiester linkages.  相似文献   

6.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

7.
When incubated with a 9,000 x g rat-liver supernatant, benzo(a)pyrene 7,8-diol and benz(a)anthracene 8,9-diol were more active than the parent hydrocarbons in inducing his+ revertant colonies of S. typhimurium TA 100. Benzo(a) pyrene 9,10-diol was less active than benzo(a)pyrene; the K-region diols, benz(a)anthracene 5,6-diol and benzo(a)pyrene 4,5-diol, were inactive. None of the diols was active when the cofactors for the microsomal mono-oxygenase were omitted. The diol-epoxides benzo(a)pyrene 7,8-diol 9,10-oxide, benz(a)anthracene 8,9-diol 10,11-oxide and 7-methylbenz(a)anthracene 8,9-diol 10,11-oxide and the K-region epoxides, benzo(a)pyrene 4,5-oxide and benz(a)anthracene 5,6-oxide, were mutagenic without further metabolism.  相似文献   

8.
Sustained induction of nitric oxide (NO) in chronic inflammation may be mutagenic, through DNA damage induction and/or DNA repair inhibition. Although there is good evidence that NO can cause DNA damage, how NO is involved in DNA repair remains elusive. By using DNA synthesis inhibitors to accumulate DNA strand breaks in comet assay, we show that NO and peroxynitrite inhibit DNA-adduct excision in human fibroblasts damaged by UVC, 4-nitroquinoline 1-oxide, benzo[a]pyrene dihydrodiol epoxide, cisplatin, or mitomycin C, but not with methyl methane sulfonate. Treating cells with arsenite increased NO production and also inhibited the DNA-adduct excision induced by UVC, 4-nitroquinoline 1-oxide, benzo[a]pyrene dihydrodiol epoxide, cisplatin, and mitomycin C, but not by methyl methane sulfonate, H(2)O(2), sodium nitrosoprusside, or 3-morpholinosydnonimine. Arsenite inhibition of DNA-adduct excision was decreased by NO synthase inhibitors and NO scavengers. The nuclear extract prepared from fibroblasts pretreated with sodium nitrosoprusside, dipropylenetriamine NONOate, 3-morpholinosydnonimine, or arsenite also showed decreased activity in excising the DNA adducts induced by UVC and cisplatin but not by methyl methane sulfonate or H(2)O(2) plus Fe. These results are consistent with the notion that NO, peroxynitrite, and arsenite inhibit the DNA-adduct excision in nucleotide excision repair but not that in base excision repair.  相似文献   

9.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP 7,8-diol-9,10-epoxide) is a suspected metabolite of benzo[a]pyrene that is highly mutagenic and toxic in several strains of Salmonellatyphimurium and in cultured Chinese hamster V79 cells. BP 7,8-diol-9,10-epoxide was approximately 5, 10 and 40 times more mutagenic than benzo[a]pyrene 4,5-oxide (BP 4,5-oxide) in strains TA 98 and TA 100 of S.typhimurium and in V79 cells, respectively. Both compounds were equally mutagenic to strain TA 1538 and non-mutagenic to strain TA 1535 of S.typhimurium. The diol epoxide was toxic to the four bacterial strains at 0.5–2.0 nmole/plate, whereas BP 4,5-oxide was nontoxic at these concentrations. In V79 cells, the diol epoxide was about 60-fold more cytotoxic than BP 4,5-oxide.  相似文献   

10.
Benzo(a)pyrene 4,5-oxide is reduced to benzo(a)pyrene by microsomes in the presence of NADPH. Carbon monoxide and oxygen inhibit this reduction. The liver has highest activity which is almost lackng in new-born rats. Phenobarbital as well as 3-methylcholanthrene pretreatment increases the epoxide reduction. Additions of FMN or methylviologen stimulate the epoxide reduction; dimethylaniline N-oxide and cumene hydroperoxide are inhibitory. These results indicate that benzo(a)pyrene 4,5-oxide is reduced by the reduced form of cytochrome P-450.  相似文献   

11.
Aoyama K  Iwahori K  Miyata N 《Mutation research》2003,538(1-2):155-162
Alkaline single-cell gel electrophoresis (comet assay) enables sensitive detection of DNA damage in eukaryotic cells induced by genotoxic agents. We performed a comet assay of unicellular green alga Euglena gracilis that was exposed to genotoxic chemicals, 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), benzo[a]pyrene (BAP), mitomycin C (MMC) and actinomycin D (AMD). Tail length and tail moment in migrated DNA were measured as indications of DNA damage. MNNG and BAP were found to cause concentration-dependent increases in DNA damage. The responses were more sensitive than those of human lymphocytes under the same treatment conditions. MMC and AMD showed no positive response, as reported elsewhere. The comet assays performed at specified times after treatment revealed that the DNA damaged by MNNG and gamma-ray irradiation was repaired during the initial 1h. The results clearly show that the comet assay is useful for evaluating chemically-induced DNA damage and repair in E. gracilis. Given the ease of culturing and handling E. gracilis as well as its sensitivity, the comet assay of this alga would undoubtedly prove to be a useful tool for testing the genotoxicity of chemicals and monitoring of environmental pollution.  相似文献   

12.
13C-NMR analysis of the glutathione conjugates formed from (±)-benzo(a)-pyrene 4,5-oxide-4,5-13C by a purified glytathione transferase from little skate (Raja erinacea) liver demonstrated that equivalent amounts of the positional isomers (4,5-dihydro-4-hydroxy-5-glutathionylbenzo(a)pyrene and 4,5-dihydro-4-glutathionyl-5-hydroxybenzo(a)pyrene) were formed. Separation of these conjugates by HPLC and subsequent 13C-NME studies showed that only one diastereoisomer of each positional isomer was formed by the skate enzyme, each enantiomer of the arene oxide having produced only one of the two possible positional isomers. The non-enzymic reaction of (±)-benzo(a)pyrene 4,5-oxide with glutathione produced the four possible stereoisomers resulting from trans addition to the epoxide ring. This was also true when rat liver cytosol was used as the source of transferase activity. The data demonstrate that skate liver glutathione transferase 4 has high substrate regiospecificity and stereospecificity for (±)-benzo(a)pyrene 4,5-oxide.  相似文献   

13.
We have examined the ability of normal fibroblasts and of excision-deficient xeroderma pigmentosum (XP) and XP variant fibroblasts to perform postreplication DNA repair after increasing doses of either ultraviolet (UV) irradiation or mutagenic benzo(a)pyrene derivatives. XP cells defective in the excision of both UV-induced pyrimidine dimers and guanine adducts induced by treatment with the 7,8-diol-9,10-epoxides of benzo(a)pyrene were partially defective in their ability to synthesize high molecular weight DNA after the induction of both classes of DNA lesions. This defect was more marked in XP variant cells, despite their ability to remove by excision repair both pyrimidine dimers and the diol epoxide-induced lesions to the same degree as observed in normal cells. The benzo(a)pyrene 9,10-oxide had no effect in any of the 3 cell lines. The response of the excision and postreplication DNA repair mechanisms operating in human fibroblasts treated with benzo(a)pyrene 7,8-diol-9,10-epoxides, therefore, appears to resemble closely that seen after the induction of pyrimidine dimers by UV irradiation.  相似文献   

14.
The in vitro micronucleus (MN) test is widely used for screening genotoxic compounds, but it often produces false-positive results. To consider the significance of positive results, it is important to know whether DNA adducts are formed in the cells treated with the test compound. Recently, Matsuda et al. developed the DNA adductome approach to detect DNA adducts comprehensively ([4] Kanaly, et al., Antioxid. Redox Signal., 2006, 8, 993-1001). We applied this method to assess the DNA-damaging capability of in vitro MN test-positive compounds. CHL/IU cells were treated with compounds from three categories: (1) carcinogens causing DNA alkylation, ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine; (2) carcinogens producing DNA bulky adducts, 2-amino-6-phenyl-1-methylimidazo[4,5-b]pyrene, benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, and 4-nitroquinoline-1-oxide, and (3) non-carcinogens, caffeine, maltol, and sodium chloride, with or without metabolic activation. With the conditions in which all test compounds gave positive results in the MN tests, DNA was extracted from the cells and hydrolyzed to deoxyribonucleosides, which were subsequently subjected to LC/ESI-MS/MS analysis. All carcinogens (categories 1 and 2) produced various DNA adduct peaks, and some of the m/z peak values corresponded to known adducts. No non-carcinogens produced DNA adducts, indicating that these compounds produced MN through different mechanisms from the adduct formation. These results indicate that the adductome approach is useful to demonstrate DNA damage formation of MN test-positive compounds and to understand their mechanisms of action.  相似文献   

15.
Benzo[a]pyrene (BP) and two of its major metabolites, the ultimate mutagen BP-4,5-oxide and the proximate mutagen trans-7,8-dihydro-7,8-dihydroxybenzo[a]pyrene (BP-7,8-diol) were investigated for mutagenicity in Salmonella typhimurium TA1538, TA98 and TA100 using an intrasanguineous host-mediated assay. BP and BP-4,5-oxide were not mutagenic under any experimental conditions. BP-7,8-diol was inactive with the strain TA1538 but was mutagenic with the strains TA98 and TA100. The effect was potentiated by pretreatment of the host mice with the cytochrome P-450 inducer 5,6-benzoflavone. We conclude: (i) one of the reasons for the observed insensitivity of the intrasanguineous host-mediated assay towards BP is that BP-4,5-oxide, which contributes to the microsome-mediated mutagenicity of BP, is inactive in the host-mediated assay; (ii) the finding that BP-7,8-diol is mutagenic in the host-mediated assay demonstrates that the lack of mutagenicity of BP is not intrinsic; (iii) the potentiated mutagenicity after treatment of the hosts with 5,6-benzoflavone suggests that cytochrome P-450 is more important in the activation of BP-7,8-diol in this system than other enzymes (e.g. prostaglandin synthase) that can also activate this compound in vitro.  相似文献   

16.
Although it has been observed that many epoxides are ultimate mutagens, surprisingly little is known about epoxides to which man may be extensively exposed, e.g., physiological compounds, drugs, drug metabolites and pesticides. We have now investigated 35 such and related epoxides for mutagenicity, using reversion of his?Salmonella typhimurium TA98 and TA100 as biological end-point. None of the tested steroids (12 compounds), vitamin K epoxides (3 compounds) and pesticides (dieldrin, endrin, HEOM (1,2,3,4,9,9-hexachloro-6,7-epoxy-1,4,4a5,6,7,8,8a-octahydro-1,4-methanonaphthalene), heptachlor epoxide) showed any mutagenic activity. Negative results were also obtained with the antibiotics oleandomycin, anti-capsin and asperlin, the cardiotonic drug resibufogenin, the widely used parasympatholytic drugs butylscopolamine and scopolamine, the sedatives valtratum, didovaltratum and acevaltratum, the tranquilizer oxanamide as well as with the drug metabolites carbamazepine 10,11-oxide and diethylstilbestrol α,β-oxide. Three barbiturate epoxides, formed by metabolism of allobarbital, alphenal and secobarbital, caused weak but reproducible mutagenic effects at high concentrations. The cytostatic agent ethoglucide was the only drug having substantial mutagenic activity. Its mutagenic potency was similar to those of the control epoxides styrene 7,8-oxide, p-bromostyrene 7,8-oxide and m-bromostyrene 7,8-oxide, but much lower than those of benzo[a]pyrene 4,5-oxide, benzo[e]pyrene 4,5-oxide and 7,12-dimethylbenz[a]-anthracene 5,6-oxide.Some epoxides were also tested in other Salmonella typhimurium strains or in the presence of rat-liver S9 mix. Positive results were only obtained with compounds that had already been detected as mutagens in the direct test with strain TA100.  相似文献   

17.
The mutagenic activities toward S. typhimurium strains TA98 and TA100 of K-region derivatives of 1-nitropyrene and pyrene were determined. The compounds tested were trans-4,5-dihydro-4,5-dihydroxy-1-nitropyrene (Compound 3), trans-4,5-dihydro-4,5-dihydroxypyrene (Compound 4), 1-nitropyrene-4,5-quinone (Compound 5), 1-nitropyrene-9,10-quinone (Compound 6), pyrene-4,5-quinone (Compound 7), and the lactones, 1-nitro-5H-phenanthro[4,5-bcd]pyran-5-one (Compound 8), 3-nitro-5H-phenanthro[4,5-bcd]pyran-5-one (Compound 9), and 5H-phenanthro[4,5-bcd]pyran-5-one (Compound 10). Neither pyrene nor any of its K-region derivatives was mutagenic, either in the absence or presence of S9 mix at the doses tested. Of the K-region derivatives of 1-nitropyrene, the lactones (Compounds 8 and 9) were generally the most active; 0.25 microgram/plate induced 900-2200 revertants in TA98 or TA100 without activation. The 4,5-dihydrodiol (Compound 3), an established mammalian metabolite of 1-nitropyrene, was less mutagenic than was 1-nitropyrene in TA98, but was more mutagenic than was 1-nitropyrene in TA100, regardless of the presence of S9 mix. The quinones (Compounds 5 and 6) were less mutagenic than was 1-nitropyrene in the absence of S9 mix in both strains, but their activities were increased in the presence of S9 mix. The mutagenic activities of the lactones (Compounds 8 and 9) were lower in strains TA98NR and TA98/1,8-DNP6 than in TA98, indicating that nitro-reduction and esterification are involved in their activation. The results of this study indicate that K-region derivatives of 1-nitropyrene may be important in its metabolic activation.  相似文献   

18.
《Small Ruminant Research》2010,92(2-3):141-152
Despite its interest, little is known about the potential of 1-hydroxypyrene to be used as biomarker of exposure of dairy ruminants (goat, sheep and cow) to pyrene or other polycyclic aromatic hydrocarbons (PAHs) and, to date, no clear approach has been proposed to evaluate and use this biomarking potential for evaluating exposure to pyrene and other polycyclic aromatic hydrocarbons also prone to contaminate the vegetal cover ingested by these dairy ruminants. In the present study, three Alpin goats were daily submitted to two different levels (0.04 and 0.28 mg/day) of pyrene oral ingestion, together with phenanthrene and benzo(a)pyrene, during 1 week each. Extraction and HPLC-fluorimetry analysis results on 1-hydroxypyrene in milk and urine as well as on 1, 2, 3 and 4-OH-phenanthrene and 3-OH benzo(a)pyrene in urine were fruitfully combined with few recently published results on 1-hydroxypyrene excretion achieved in a former and similar experiment performed on a set of four goats with doses 1, 7 and 49 mg/day/goat. Statistical analysis demonstrated the biomarking potential of 1-hydroxypyrene to be used for evaluation of oral exposure to pyrene under low and large levels of exposure and transfer (linear) equations were proposed. Finally, a literature based approach, combined with the achieved experimental transfer rates, was proposed for evaluating the amounts of 12 additional polycyclic aromatic hydrocarbons into the fodder, thus extending the potential of 1-hydroxypyrene in urine and/or milk to be used as a biomarker of oral exposure to PAHs. Keeping in mind that milk is much easier to sample as compared to urine, such approach may be used as a first step for evaluation of oral exposure of goat and likely other dairy ruminants to polycyclic aromatic hydrocarbons prior to any exhaustive, time and cost consuming analytical investigation.  相似文献   

19.
The metabolic activation of benzo[a]pyrene (BP) was examined in six samples of human skin after topical application of the hydrocarbon to the skin in short-term organ culture. The results show that all of the samples were capable of metabolizing BP to water-soluble products and to ether-soluble products that included the 4,5-, 7,8- and 9,10-dihydrodiols and a product which had chromatographic properties identical with those of authentic trans-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (BP-11,12-diol). The major BP-deoxyribonucleoside adduct detected in each skin sample appeared to be formed from the reaction of r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BP-7,8-diol 9,10-oxide) with deoxyguanosine residues in DNA.  相似文献   

20.
Nitropyrene, the predominant nitropolycyclic hydrocarbon found in diesel exhaust, is a mutagenic and tumorigenic environmental pollutant that requires metabolic activation via nitroreduction and ring oxidation. In order to determine the role of ring oxidation in the mutagenicity of 1-nitropyrene, its oxidative metabolites, 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, were synthesized and their mutation spectra were determined in the coding region of hprt gene of CHO cells by a PCR amplification of reverse-transcribed hprt mRNA, followed by a DNA sequence analysis. A comparison of the two metabolites for mutation frequencies showed that 1-nitropyrene 9,10-oxide was 2-times higher than 1-nitropyrene 4,5-oxide. The mutation spectrum for 1-nitropyrene 4,5-oxide was base substitutions (33/49), one base deletions (11/49) and exon deletions (5/49). In the case of 1-nitropyrene 9,10-oxide, base substitutions (27/50), one base deletions (15/50), and exon deletions (8/50) were observed. Base substitutions were distributed randomly throughout the hprt gene. The majority of the base substitutions in mutant from 1-nitropyrene 4,5-oxide treated cells were A-->G transition (15/33) and G-->A transition (8/33). The predominant base substitution, A-->G transition (11/27) and G-->A transition (8/27), were also observed in mutant from 1-nitropyrene 9,10-oxide treated cells. The mutation at the site of adenine and guanine was consistent with the previous results, where the sites of DNA adduct formed by these compounds were predominant at the sites of purines. A comparison of the mutational patterns between 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide showed that there were no significant differences in the overall mutational spectrum. These results indicate that each oxidative metabolite exhibits an equal contribution to the mutagenicity of 1-nitropyrene, and ring oxidation of 1-nitropyrene is an important metabolic pathway to the formation of significant lethal DNA lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号