首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction of lubricating film thickness in UHMWPE hip joint replacements   总被引:4,自引:0,他引:4  
An elastohydrodynamic lubrication model developed for a ball-in-socket configuration in a previous studies by the present authors (Jalali-Vahid et al., Thinning films and tribological interfaces, 26th Leeds-Lyon Symposium on Tribology, 2000, pp. 329-339) was applied to analyse the lubrication problem of a typical artificial hip joint replacement, consisting of an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup against a metallic or ceramic femoral head. The cup was assumed to be stationary whilst the ball was assumed to rotate at a steady angular velocity and under a constant load. A wide range of main design parameters were considered. It has been found that the predicted lubricating film thickness increases with a decrease in the radial clearance, an increase in the femoral head radius, an increase in UHMWPE thickness and a decrease in UHMWPE modulus. However, the predicted lubricating film thicknesses are not found to be sufficiently large in relation to the surface roughness of the cup and head to indicate separation of the two articulating surfaces. It should also be noted that if the design features are unable to secure full fluid film lubrication, it may be preferable to select them for minimum wear rather than maximum film thickness. For example, an increase in head radius will enhance the film thickness, but it will also increase the sliding distance and hence wear in mixed or boundary lubrication conditions. Furthermore, it is pointed out that an increase in the predicted lubricant film thickness is usually associated with an increase in the contact area, and this may cause lubricant starvation and stress concentration at the edge of the cup, and adversely affect the tribological performance of the implant. The effect of running-in process on the lubrication in UHMWPE hip joint replacements is also discussed.  相似文献   

2.
In this paper an application of the boundary element method for simulating wear in total hip prosthesis is presented. Several examples including different update periods of the worn acetabular cup, various femoral head sizes and various materials for both the femoral head and the acetabular cup are simulated under the same variable loading conditions for up to 20 years of service. Moreover, two different femoral models are considered in order to investigate the influence of the femoral modelling. The analysis demonstrates that due to the boundary only modelling requirement, the computational time and storage remains low, allowing large service periods to be simulated. Generally, the results obtained are in good agreement with other researchers findings. Moreover, ignoring the bending of the femoral neck in the model, results in a small overestimation of the maximum wear depth, while the volumetric wear is slightly underestimated. However, these differences are trivial considering the reduction of the computational effort.  相似文献   

3.
A new bio-tribological simulator system was designed and built for basic wear tests on artificial hip joint materials and for common tribological studies applications. The module of hip joint simulator is consisted of Flexion and Extension (FE), Abduction and Adduction (AA) and Internal and External Rotation (IER). Preliminary tests were done with a 28 mm CoCrMo femoral head and a Ultra High Molecular Weight Polyethylene (UHMWPE) cup. Results showed that the wear rate was close to the clinical one. A frequency control system and a heating system were developed to offer a wide range of rotation frequency and temperature so as to provide proper experiments. In the Pin-on-Disk (POD) part, eight precision-made pins were generated and an advanced computer system was built up to measure the friction coefficient of the tests samples.  相似文献   

4.

Background  

Contact pressure of UHMWPE acetabular cup has been shown to correlate with wear in total hip replacement (THR). The aim of the present study was to test the hypotheses that the cup geometry, abduction angle, thickness and clearance can modify the stresses in cemented polyethylene cups.  相似文献   

5.
AIM: Most methods used for the determination of volumetric wear of polyethylene cups are based on the assumption that the head of the prosthesis penetrates the cup in "cylindrical" fashion. The new accurate optical method is independent of this disputable assumption. METHOD: The articulating surface of the cup is scanned with light and a data set of 60,000 pixels obtained in this way is stored in a computer. Data obtained from used cups were compared with those obtained from unused cups. The volumetric wear was calculated directly by threefold integration. To assess the changes in surface shape, the data are fitted by an ellipsoid whose long axis defines the mean direction of load. A total of 18 retrieved and 3 unused cups of different types were studied. RESULTS: The unused acetabular cups deviated only slightly from ideal hemispheres. The surfaces showed rotational symmetry, and an undulation having an amplitude of 0.1 mm between dome and equator. For all explanted cups, the assumption of cylindrical penetration of the head into the polyethylene was shown not to represent the true situation. The cup expands in all directions, and the volumetric wear is underestimated by 50% with the traditional methods. The data suggest that long-term survival may be jeopardized when the main direction of loading is centered on the dome of the cup. Ceramic heads were associated with smaller rates of volumetric wear. CONCLUSION: The new optical method is characterised by short measuring times, precision and simple application. Analysis of the wear patterns of polyethylene components using this technique may contribute to a further understanding of the complex mechanisms of aseptic loosening.  相似文献   

6.
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.  相似文献   

7.
Squeaking of hip replacements with ceramic-on-ceramic bearings has put the use of this material into question despite its superior wear behavior. Squeaking has been related to implant design. The purpose of this study was to determine the influence of particular acetabular cup and femoral stem designs on the incidence of squeaking and its characteristics. The dynamic behavior of the stem, head and stem assembled with head was investigated by determining their eigenfrequencies using experimental and numerical modal analysis. Four different stem and three different cup designs were investigated. Operational system vibrations resulting in audible squeaking were reproduced in a hip simulator and related to the respective component eigenfrequencies. The applied joint load and bearing clearance were varied in the clinically relevant range. Stems with lower eigenfrequencies were related to lower squeaking frequencies and increased acoustic pressure (loudness), and therefore to a higher susceptibility to squeaking. Higher load increased the squeaking frequency, while the acoustic pressure remained unchanged. No influence of the clearance or the cup design was found. Stem design was found to have an important influence on squeaking characteristics and its incidence, confirming and explaining similar clinical observations. Cup design itself was found to have no major influence on the dynamic behavior of the system but plays an important indirect role in influencing the magnitude of friction: Squeaking only occurs if the friction in the joint articulation is sufficient to excite vibrations to audible magnitudes. If friction is low, no squeaking occurs with any of the designs investigated.  相似文献   

8.
Aseptic loosening from polyethylene wear debris is the leading cause of failure for metal-on-polyethylene total hip implants. Third-body debris ingress to the bearing space results in femoral head roughening and acceleration of polyethylene wear. How third-body particles manage to enter the bearing space between the closely conforming articulating surfaces of the joint is not well understood. We hypothesize that one such mechanism is from convective fluid transport during subluxation of the total hip joint. To test this hypothesis, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated, to quantify fluid ingress into the bearing space during a leg-cross subluxation event. The results indicated that extra-articular joint fluid could be drawn nearly to the pole of the cup with even very small separations of the femoral head (<0.60mm). Debris suspended near the equator of the cup at the site of maximum fluid velocity just before the subluxation began could be transported to within 11 degrees from the cup pole. Larger head diameters resulted in increased fluid velocity at all sites around the entrance to the gap compared to smaller head sizes, with fluid velocity being greatest along the anterosuperolateral cup edge, for all head sizes. Fluid pathlines indicated that suspended debris would reach similar angular positions in the bearing space regardless of head size. Increased inset of the femoral head into the acetabular cup resulted both in higher fluid velocity and in transport of third-body debris further into the bearing space.  相似文献   

9.
The present investigation focuses on total hip replacement using ceramic acetabular components. The relationship between the position of the cup and the range of motion (ROM) was investigated. A limited range of motion may cause impingement, which is defined as contact between the femoral neck and the rim of the acetabular cup. Impingement may result in wear, chipping, fracture or dislocation of the femoral head. Joint movements were simulated in a three-dimensional CAD program. The results obtained underscore the importance of correct positioning and design of the cup for achieving a ROM as close to the physiological situation as possible. With ceramic cups, the inclination angle should not be more than 45 degrees, and the antetorsion angle between 10 and 15 degrees. If the cup is too vertical, the risk of dislocation and fracture of the ceramic increases. If, on the other hand, the angle of inclination is too small, flexion and abduction will be greatly limited. The study shows that acetabular components with non-recessed ceramic inserts should not be used. Slight recession of the insert helps to avoid impingement. The ROM is reduced and the risk of impingement appreciably increased when mushroom-shaped femoral heads (XL heads) or ceramic inserts protected by a polyethylene ring are used.  相似文献   

10.
A computational model was developed to identify the sites of third body particle embedment in a total hip acetabular component surface that are most problematic in terms of roughening the overpassing regions of the femoral head counterface, leading in turn to most severely accelerated polyethylene wear. The analytical approach used was to calculate loci of acetabular sites that, during the gait cycle, overpass previously documented regions of kinetically most critical femoral head roughening. Instantaneous local contact stress and sliding distance were postulated as factors contributing to the severity of the femoral head scratching/roughening which would be expected, due to otherwise-similar particles embedded along each such acetabular overpass locus. The computational results showed that the location of debris embedment was a potent determinant of the amount of polyethylene wear acceleration expected. The data also showed that the supero-lateral aspect of the acetabular cup is consistently and by far the most problematic area for third body particle embedment.  相似文献   

11.
Late loosening of cemented acetabular cups is increasingly being recognized as a clinical problem. One of the factors which may contribute to loosening is high localized deformation and stress at the cement-bone interface, the magnitude of which depends on the size of the total hip replacement (THR) femoral head. The effects of varying the femoral head size, from 22 to 32 mm, on strain values measured on the surface of the cup were investigated using experimental stress analysis techniques. The largest absolute strains were recorded when loading with the 22 mm head size. Peak strain values decreased to a minimum with the 26 mm head size and increased steadily with head sizes beyond 26 mm. The selection of an acetabular cup size and corresponding femoral head size in a total hip arthroplasty should not be an arbitrary one, but should be based on scientific studies which indicate minimum states of stress within the cup and cement mantle, as well as clinical evidence that the combination of components shows a reduced incidence of failure. This study experimentally quantifies the states of stress on the surface of the acetabular cup and points to the possible existence of an optimum component size to minimize surface stress.  相似文献   

12.
Biphasic properties of articular cartilage allow it to be an excellent bearing material and have been studied through several simplified experiments as well as finite element modelling. However, three-dimensional biphasic finite element (FE) models of the whole joint are rare. The current study was carried out to experimentally validate FE methodology for modelling hemiarthroplasty. Material properties such as equilibrium elastic modulus and permeability of porcine acetabular cartilage were initially derived by curve-fitting an experimental deformation curve with that obtained using FE. These properties were then used in the hemiarthroplasty hip joint modelling. Each porcine acetabular cup was loaded with 400N using a 34mm diameter CoCr femoral head. A specimen-specific FE model of each acetabular cup was created using μCT and a series of software processes. Each model was analysed under conditions similar to those tested experimentally. Contact stresses and contact areas predicted by the model, immediately after loading, were then compared with the corresponding experimentally measured values. Very high peak contact stresses (maximum experimental: 14.09MPa) were recorded. A maximum difference of 12.42% was found in peak contact stresses. The corresponding error for contact area was 20.69%. Due to a fairly good agreement in predicted and measured values of contact stresses and contact areas, the integrated methodology developed in this study can be used as a basis for future work. In addition, FE predicted total fluid load support was around 80% immediately after loading. This was lower than that observed in conforming contact problems involving biphasic cartilage and was due to a smaller local contact area and variable clearance making fluid exudation easier.  相似文献   

13.
Finite element simulation of early creep and wear in total hip arthroplasty   总被引:4,自引:0,他引:4  
Polyethylene wear particulate has been implicated in osteolytic lesion development and may lead to implant loosening and revision surgery. Wear in total hip arthroplasty is frequently estimated from patient radiographs by measurement of penetration of the femoral head into the polyethylene liner. Penetration, however, is multi-factorial, and includes components of wear and deformation due to creep. From a clinical perspective, it is of great interest to separate these elements to better evaluate true wear rates in vivo. Thus, the aim of this study was to determine polyethylene creep and wear penetration and volumetric wear during simulated gait loading conditions for variables of head size, liner thickness, and head–liner clearance. A finite element model of hip replacement articulation was developed, and creep and wear simulation was performed to 1 million gait cycles. Creep of the liner occurred quickly and increased the predicted contact areas by up to 56%, subsequently reducing contact pressures by up to 41%. Greater creep penetration was found with smaller heads, thicker liners, and larger clearance. The least volumetric wear but the most linear penetration was found with the smallest head size. Although polyethylene thickness increases from 4 to 16 mm produced only slight increases in volumetric wear and modest effects on total penetration, the fraction of creep in total penetration varied with thickness from 10% to over 50%. With thicker liners and smaller heads, creep will comprise a significant fraction of early penetration. These results will aid an understanding of the complex interaction of creep and wear.  相似文献   

14.
The elastohydrodynamic lubrication analysis was carried out in this study for a typical metal-on-metal hip-resurfacing prosthesis under a simple steady-state rotation. Both the Reynolds equation and the elasticity equation were coupled and solved numerically by the finite difference method. The finite element method was used to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. The effect of the radial clearance between the femoral head and the acetabular cup on the predicted film thickness and pressure distribution was investigated. The predicted minimum lubricating film thickness was found to compare favourably with the prediction using the Hamrock and Dowson [J. Lubrication Technol. 100 (1978) 236] formula based on the assumption of ball-on-plane semi-infinite solids. This implies that the non-metallic materials such as bone and cement underlying the metallic components have a small effect on the predicted lubrication performance for the particular metal-on-metal hip-resurfacing prosthesis considered in this study. Under realistic physiological walking conditions, a decrease in the radial clearance from 150 to 50 microm resulted in a 137% increase in the predicted minimum film thickness from 19 to 45 nm. Consequently, given a surface roughness of 0.01 microm for both the metallic femoral and acetabular bearing surfaces, the predicted mixed lubrication regime for the larger clearance was changed to a full fluid film lubrication regime for the smaller clearance. This clearly highlighted the importance of the design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses.  相似文献   

15.
This paper presents a computational simulator for the hip to compute the wear and heat generation on artificial joints. The friction produced on artificial hip joints originates wear rates that can lead to failure of the implant. Furthermore, the frictional heating can increase the wear. The developed computational model calculates the wear in the joint and the temperature in the surrounding zone, allowing the use of different combinations of joint materials, daily activities and different individuals. The pressure distribution on the joint bearing surfaces is obtained with the solution of a contact model. The heat generation by friction and the volumetric wear is computed from the pressure distribution and the sliding distance. The temperature is obtained from the solution of a transient heat conduction problem that includes the time-dependent heat generated by friction. The contact and heat conduction problems are solved numerically with the Finite Element Method. The developed computational model performs a full simulation of the acetabular bearing surface behaviour, which is useful for acetabular cup design and material selection. The results obtained by the present model agree with experimental and clinical data, as well as other numerical studies.  相似文献   

16.
To isolate the primary variables influencing acetabular cup and interface stresses, we performed an evaluation of cup loading and cup support variables, using a Statistical Design of Experiments (SDOE) approach. We developed three-dimensional finite element (FEM) models of the pelvis and adjacent bone. Cup support variables included fixation mechanism (cemented or noncemented), amount of bone support, and presence of metal backing. Cup loading variables included head size and cup thickness, cup/head friction, and conformity between the cup and head. Interaction between and among variables was determined using SDOE techniques. Of the variables tested, conformity, head size, and backing emerged as significant influences on stresses. Since initially nonconforming surfaces would be expected to wear into conforming surfaces, conformity is not expected to be a clinically significant variable. This indicates that head size should be tightly toleranced during manufacturing, and that small changes in head size can have a disproportionate influence on the stress environment. In addition, attention should be paid to the use of nonmetal backed cups, in limiting cup/bone interface stresses. No combination of secondary variables could compensate for, or override the effect of, the primary variables. Based on the results using the SDOE approach, adaptive FEM models simulating the wear process may be able to limit their parameters to head size and cup backing.  相似文献   

17.
In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ?A) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ?A. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.  相似文献   

18.
Constrained acetabular liners are utilized to deal with the infrequent but devastating problem of recurrent dislocation. While an encouraging treatment of last resort, the clinical performance of contemporary constrained liners has been somewhat mixed. There are multiple factors contributing to this variability, one of which is the limited understanding of the intrinsic mechanical characteristics of these specialty devices. To address this issue, a three-dimensional, materially nonlinear, multi-surface contact finite element model of a representative constrained liner was created. The model was physically validated, and then used for parametric testing to explore the effects of individual design features. The model was exercised for both intra-operative assembly and lever-out dislocation. It was found that the coefficient of friction between the femoral head and the liner substantially affected both the force required to seat the femoral head into the liner during assembly, and the peak moment resisting dislocation (226% increase in assembly force for friction coefficients of 0.2 versus 0.0; 49% reduction in dislocation moment for friction coefficients of 0.013 versus 0.135). As expected, the cup opening radius also had a dominant effect on both maneuvers: decreasing the opening radius from 13.9 to 13.6 mm increased assembly force by 506 N and increased the dislocation moment by over 3.5 N-m, whereas the influence of other design parameters was much more modest.  相似文献   

19.

Introduction

Treatment of femoral neck fractures in young adults may require total hip arthroplasty or hip hemiarthroplasty using a bipolar cup. The latter can, however, result in migration of the femoral head and poor long-term results.

Case presentation

We report a case of femoral head migration after hemiarthroplasty performed for femoral neck fracture that had occurred 22 years earlier, when the patient (a Japanese man) was 20 years old. He experienced peri-prosthetic fracture of the femur, subsequent migration of the prosthesis, and a massive bone defect of the pelvic side acetabular roof. After bone union of the femoral shaft fracture, the patient was referred to our hospital for reconstruction of the acetabular roof. Intra-operatively, we placed two alloimplants of bone from around the transplanted femoral head into the weight-bearing region of the acetabular roof using an impaction bone graft method. We then implanted an acetabular roof reinforcement plate and a cemented polyethylene cup in the position of the original acetabular cup. Eighteen months post-operatively, X-rays showed union of the transplanted bone.

Conclusions

Treatment of femoral neck fractures in young adults is usually accomplished by osteosynthesis, but it may be complicated by femoral head avascular necrosis or by infection or osteomyelitis. In such cases, once an infection has subsided, either hip hemiarthroplasty using a bipolar cup or total hip arthroplasty may be required. However, if the acetabular side articular cartilage is damaged, a bipolar cup should not be used. Total hip arthroplasty should be performed to prevent migration of the implant.  相似文献   

20.
UHMWPE composites reinforced with Bovine Bone Hydroxyapatite(BHA)in different contents were prepared by heatpressing formation method.A hip joint wear simulator was used to investigate the biotribological behavior of UHMWPE/BHAcomposite acetabular cups against CoCrMo alloy femoral heads in bovine synovia lubrication at 37±1 ℃.It was found that theaddition of BHA powder to UHMWPE can improve the hardness and creep modulus of UHMWPE/BHA composites,anddecrease their wear rates under bovine synovia lubrication.When the content of BHA filler particles was up to 30 wt%,UHMWPE/BHA composites demonstrated the well design performances of the surface and biotribological properties.Fatigue,ploughing and slight adhesive wear were the main wear mechanisms for UHMWPE and its composites.In addition,the sizes ofwear particles became larger with an increase in BHA powder addition.These results suggest that BHA filler is a desirablecomponent to increase the wear resistance of UHMWPE/BHA composites for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号