首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EB1 proteins bind to microtubule ends where they act in concert with other components, including the adenomatous polyposis coli (APC) tumor suppressor, to regulate the microtubule filament system. We find that EB1 is a stable dimer with a parallel coiled coil and show that dimerization is essential for the formation of its C-terminal domain (EB1-C). The crystal structure of EB1-C reveals a highly conserved surface patch with a deep hydrophobic cavity at its center. EB1-C binds two copies of an APC-derived C-terminal peptide (C-APCp1) with equal 5 microM affinity. The conserved APC Ile2805-Pro2806 sequence motif serves as an anchor for the interaction of C-APCp1 with the hydrophobic cavity of EB1-C. Phosphorylation of the conserved Cdc2 site Ser2789-Lys2792 in C-APCp1 reduces binding four-fold, indicating that the interaction APC-EB1 is post-translationally regulated in cells. Our findings provide a basis for understanding the dynamic crosstalk of EB1 proteins with their molecular targets in eukaryotic organisms.  相似文献   

2.
Highly conserved EB1 family proteins bind to the growing ends of microtubules, recruit multiple cargo proteins, and are critical for making dynamic microtubules in vivo. However, it is unclear how these master regulators of microtubule plus ends promote microtubule dynamics. In this paper, we identify a novel EB1 cargo protein, Sentin. Sentin depletion in Drosophila melanogaster S2 cells, similar to EB1 depletion, resulted in an increase in microtubule pausing and led to the formation of shorter spindles, without displacing EB1 from growing microtubules. We demonstrate that Sentin's association with EB1 was critical for its plus end localization and function. Furthermore, the EB1 phenotype was rescued by expressing an EBN-Sentin fusion protein in which the C-terminal cargo-binding region of EB1 is replaced with Sentin. Knockdown of Sentin attenuated plus end accumulation of Msps (mini spindles), the orthologue of XMAP215 microtubule polymerase. These results indicate that EB1 promotes dynamic microtubule behavior by recruiting the cargo protein Sentin and possibly also a microtubule polymerase to the microtubule tip.  相似文献   

3.
Nakamura M  Zhou XZ  Lu KP 《Current biology : CB》2001,11(13):1062-1067
Human EB1 was originally cloned as a protein that interacts with the COOH terminus of adenomatous polyposis coli (APC). Interestingly, this interaction is often disrupted in colon cancer, due to mutations in APC. EB1 also interacts with the plus-ends of microtubules and targets APC to microtubule tips. Since APC is detected on the kinetochores of chromosomes, it has been hypothesized that the EB1-APC interaction connects microtubule spindles to the kinetochores and regulates microtubule stability. In yeast, EB1 regulates microtubule dynamics, and its binding domain in APC may be conserved in Kar9, an EB1 binding protein involved in the microtubule-capturing mechanism. These results suggest that the interaction of EB1 and APC is important and may be conserved. However, it is largely unknown whether the EB1-APC interaction affects microtubule dynamics. Here, we show that EB1 potently promotes microtubule polymerization in vitro and in permeabilized cells, but, surprisingly, only in the presence of the COOH-terminal EB1 binding domain of APC (C-APC). Significantly, this C-APC activity is abolished by phosphorylation, which also disrupts its ability to bind to EB1. Furthermore, yeast EB1 protein effectively substitutes for the human protein but also requires C-APC in promoting microtubule polymerization. Finally, C-APC is able to promote microtubule polymerization when stably expressed in APC mutant cells, demonstrating the ability of C-APC to promote microtubule assembly in vivo. Thus, the interaction between EB1 and APC plays an essential role in the regulation of microtubule polymerization, and a similar mechanism may be conserved in yeast.  相似文献   

4.
EB1 family proteins are evolutionarily conserved proteins that bind microtubule plus-ends and centrosomes and regulate the dynamics and organization of microtubules. Human EB1 family proteins, which include EB1, EBF3, and RP1, also associate with the tumor suppressor protein adenomatous polyposis coli (APC) and p150glued, a component of the dynactin complex. The structural basis for interaction between human EB1 family proteins and their associated proteins has not been defined in detail. EB1 family proteins have a calponin homology (CH) domain at their N terminus and an EB1-like C-terminal motif at their C terminus; the functional importance of these domains has not been determined. To better understand functions of human EB1 family proteins and to reveal functional similarities and differences among these proteins, we performed detailed characterizations of interactions between human EB1 family proteins and their associated proteins. We show that amino acids 1-133 of EB1 and EBF3 and the corresponding region of RP1, which contain a CH domain, are necessary and sufficient for binding microtubules, thus demonstrating for the first time that a CH domain contributes to binding microtubules. EB1 family proteins use overlapping but different regions that contain the EB1-like C-terminal motif to associate with APC and p150glued. Neither APC nor p150glued binding domain is necessary for EB1 or EBF3 to induce microtubule bundling, which requires amino acids 1-181 and 1-185 of EB1 and EBF3, respectively. We also determined that the EB1 family protein-binding regions are amino acids 2781-2820 and 18-111 of APC and p150glued, respectively.  相似文献   

5.
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.  相似文献   

6.
The membrane associated guanylate kinase (MAGUK) family member, human Discs Large 1 (hDlg1) uses a PDZ domain array to interact with the polarity determinant, the Adenomatous Polyposis Coli (APC) microtubule plus end binding protein. The hDLG1-APC complex mediates a dynamic attachment between microtubule plus ends and polarized cortical determinants in epithelial cells, stem cells, and neuronal synapses. Using its multi-domain architecture, hDlg1 both scaffolds and regulates the polarity factors it engages. Molecular details underlying the hDlg1-APC interaction and insight into how the hDlg1 PDZ array may cluster and regulate its binding factors remain to be determined. Here, I present the crystal structure of the hDlg1 PDZ2-APC complex and the molecular determinants that mediate APC binding. The hDlg1 PDZ2-APC complex also provides insight into potential modes of ligand-dependent PDZ domain clustering that may parallel Dlg scaffold regulatory mechanisms. The hDlg1 PDZ2-APC complex presented here represents a core biological complex that bridges polarized cortical determinants with the dynamic microtubule cytoskeleton.  相似文献   

7.
Hayashi I  Wilde A  Mal TK  Ikura M 《Molecular cell》2005,19(4):449-460
Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain of EB1 and the microtubule binding (CAP-Gly) domain of the dynactin subunit p150Glued. Each molecule of the EB1 dimer contains two helices forming a conserved four-helix bundle, while also providing p150Glued binding sites in its flexible tail region. Combining crystallography, NMR, and mutational analyses, our studies reveal the critical interacting elements of both EB1 and p150Glued, whose mutation alters microtubule polymerization activity. Moreover, removal of the key flexible tail from EB1 activates microtubule assembly by EB1 alone, suggesting that the flexible tail negatively regulates EB1 activity. We, therefore, propose that EB1 possesses an auto-inhibited conformation, which is relieved by p150Glued as an allosteric activator.  相似文献   

8.
Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end–tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics.  相似文献   

9.
The tetrameric Mnt repressor is involved in the genetic switch between the lysogenic and lytic growth of Salmonella bacteriophage P22. The solution structure of its C-terminal tetramerization domain, which holds together the two dimeric DNA-binding domains, has been determined by NMR spectroscopy. This structure reveals an assembly of four alpha-helical subunits, consisting of a dimer of two antiparallel coiled coils with a unique right-handed twist. The superhelical winding is considerably stronger and the interhelical separation closer than those found in the well-known left-handed coiled coils in fibrous proteins and leucine zippers. An unusual asymmetry arises between the two monomers that comprise one right-handed coiled coil. A difference in the packing to the adjacent monomer of the other coiled coil occurs with an offset of two helical turns. The two asymmetric monomers within each coiled coil interconvert on a time scale of seconds. Both with respect to symmetry and handedness of helical packing, the C2 symmetric four-helix bundle of Mnt differs from other oligomerization domains that assemble DNA-binding modules, such as that in the tumor suppressor p53 and the E. coli lac repressor.  相似文献   

10.
Ndel1 and Nde1 are homologous and evolutionarily conserved proteins, with critical roles in cell division, neuronal migration, and other physiological phenomena. These functions are dependent on their interactions with the retrograde microtubule motor dynein and with its regulator Lis1--a product of the causal gene for isolated lissencephaly sequence (ILS) and Miller-Dieker lissencephaly. The molecular basis of the interactions of Ndel1 and Nde1 with Lis1 is not known. Here, we present a crystallographic study of two fragments of the coiled-coil domain of Ndel1, one of which reveals contiguous high-quality electron density for residues 10-166, the longest such structure reported by X-ray diffraction at high resolution. Together with complementary solution studies, our structures reveal how the Ndel1 coiled coil forms a stable parallel homodimer and suggest mechanisms by which the Lis1-interacting domain can be regulated to maintain a conformation in which two supercoiled alpha helices cooperatively bind to a Lis1 homodimer.  相似文献   

11.
Members of the transforming acidic coiled coil (TACC) protein family are emerging as important mitotic spindle assembly proteins in a variety of organisms. The molecular details of how TACC proteins function are unknown, but TACC proteins have been proposed to recruit microtubule-stabilizing proteins of the tumor overexpressed gene (TOG) family to the centrosome and to facilitate their loading onto newly emerging microtubules. Using Xenopus egg extracts and in vitro assays, we show that the Xenopus TACC protein maskin is required for centrosome function beyond recruiting the Xenopus TOG protein XMAP215. The conserved C-terminal TACC domain of maskin is both necessary and sufficient to restore centrosome function in maskin-depleted extracts, and we provide evidence that the N terminus of maskin inhibits the function of the TACC domain. Time-lapse video microscopy reveals that microtubule dynamics in Xenopus egg extracts are unaffected by maskin depletion. Our results provide direct experimental evidence of a role for maskin in centrosome function and suggest that maskin is required for microtubule anchoring at the centrosome.  相似文献   

12.
13.
Microtubule dynamics vary during the cell cycle, and microtubules appear to be more dynamic in vivo than in vitro. Proteins that promote dynamic instability are therefore central to microtubule behavior in living cells. Here, we report that a yeast protein of the highly conserved EB1 family, Bim1p, promotes cytoplasmic microtubule dynamics specifically during G1. During G1, microtubules in cells lacking BIM1 showed reduced dynamicity due to a slower shrinkage rate, fewer rescues and catastrophes, and more time spent in an attenuated/paused state. Human EB1 was identified as an interacting partner for the adenomatous polyposis coli (APC) tumor suppressor protein. Like human EB1, Bim1p localizes to dots at the distal ends of cytoplasmic microtubules. This localization, together with data from electron microscopy and a synthetic interaction with the gene encoding the kinesin Kar3p, suggests that Bim1p acts at the microtubule plus end. Our in vivo data provide evidence of a cell cycle–specific microtubule-binding protein that promotes microtubule dynamicity.  相似文献   

14.
Lysophosphatidic acid (LPA) stimulates Rho GTPase and its effector, the formin mDia, to capture and stabilize microtubules in fibroblasts. We investigated whether mammalian EB1 and adenomatous polyposis coli (APC) function downstream of Rho-mDia in microtubule stabilization. A carboxy-terminal APC-binding fragment of EB1 (EB1-C) functioned as a dominant-negative inhibitor of microtubule stabilization induced by LPA or active mDia. Knockdown of EB1 with small interfering RNAs also prevented microtubule stabilization. Expression of either full-length EB1 or APC, but not an APC-binding mutant of EB1, was sufficient to stabilize microtubules. Binding and localization studies showed that EB1, APC and mDia may form a complex at stable microtubule ends. Furthermore, EB1-C, but not an APC-binding mutant, inhibited fibroblast migration in an in vitro wounding assay. These results show an evolutionarily conserved pathway for microtubule capture, and suggest that mDia functions as a scaffold protein for EB1 and APC to stabilize microtubules and promote cell migration.  相似文献   

15.
The microtubule associated system I fibers of the basal apparatus of the flagellate green alga Spermatozopsis similis are noncontractile and display a 28-nm periodicity. Paracrystals with similar periodicities are formed in vitro by SF-assemblin, which is the major protein component of system I fibers. We have determined the amino acid sequence of SF-assemblin and show that it contains two structural domains. The NH2-terminal 31 residues form a nonhelical domain rich in proline. The rod domain of 253 residues is alpha-helical and seems to form a segmented coiled coil with a 29-residue repeat pattern based on four heptads followed by a skip residue. The distinct cluster of acidic residues at the COOH-terminal end of the motifs (periodicity about 4 nm) may be related to tubulin binding of SF-assemblin and/or its self assembly. A similar structure has been predicted from cDNA cloning of beta-giardin, a protein of the complex microtubular apparatus of the sucking disc in the protozoan flagellate Giardia lamblia. Although the rod domains of SF-assemblin and beta-giardin share only 20% sequence identity, they have exactly the same length and display 42% sequence similarity. These results predict that system I fibers and related microtubule associated structures arise from molecules able to form a special segmented coiled coil which can pack into 2-nm filaments. Such molecules seem subject to a strong evolutionary drift in sequence but not in sequence principles and length. This conservation of molecular architecture may have important implications for microtubule binding.  相似文献   

16.
Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct alpha-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest a possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.  相似文献   

17.
The yeast protein Stu2 belongs to the XMAP215 family of conserved microtubule-binding proteins which regulate microtubule plus end dynamics. XMAP215-related proteins also bind to centrosomes and spindle pole bodies (SPBs) through proteins like the mammalian transforming acidic coiled coil protein TACC or the yeast Spc72. We show that yeast Spc72 has two distinct domains involved in microtubule organization. The essential 100 N-terminal amino acids of Spc72 interact directly with the gamma-tubulin complex, and an adjacent non-essential domain of Spc72 mediates binding to Stu2. Through these domains, Spc72 brings Stu2 and the gamma-tubulin complex together into a single complex. Manipulation of Spc72-Stu2 interaction at SPBs compromises the anchorage of astral microtubules at the SPB and surprisingly also influences the dynamics of microtubule plus ends. Permanently tethering Stu2 to SPBs by fusing it to a version of Spc72 that lacks the Stu2-binding site in part complements these defects in a manner which is dependent upon the microtubule-binding domain of Stu2. Thus, the SPB-associated Spc72-Stu2 complex plays a key role in regulating microtubule properties.  相似文献   

18.
The tumor suppressor protein adenomatous polyposis coli (APC) is a multifunctional protein with a well characterized role in the Wnt signal transduction pathway and roles in cytoskeletal regulation and cell polarity. The soluble pool of APC protein in colon epithelial tumor cells exists in two distinct complexes fractionating at approximately 20S and approximately 60S in size. The 20S complex contains components of the beta-catenin destruction complex and probably functions in the Wnt pathway. In this study, we characterized the molecular nature of the 60S APC- containing complex by examining known potential binding partners of APC. 60S APC did not contain EB1 or diaphanous, proteins that have been reported to interact with APC and are implicated in microtubule plus end stabilization. Nor did the two other microtubule associated proteins, MAP4 or KAP3, which is thought to link APC to kinesin motor proteins, associate with the 60S complex. Minor fractions of alpha-tubulin, gamma-tubulin and IQGAP1, a Rac1 and CDC42 effector that interacts with APC, specifically associated with APC in the 60S fraction. We propose that 60S APC is a discrete high molecular weight complex with a novel function in cytoskeletal regulation in epithelial cells apart from its well established role in targeting catenin destruction or its proposed role in microtubule plus end stabilization.  相似文献   

19.
Coiled coils serve as dimerization domains for a wide variety of proteins, including the medically important oligomeric tumor suppressor protein, APC. Mutations in the APC gene are associated with an inherited susceptibility to colon cancer and with approximately 75 % of sporadic colorectal tumors. To define the basis for APC pairing and to explore the anatomy of dimeric coiled coils, we determined the 2.4 A resolution X-ray crystal structure of the N-terminal dimerization domain of APC. The peptide APC-55, encompassing the heptad repeats in APC residues 2-55, primarily forms an alpha-helical, coiled-coil dimer with newly observed core packing features. Correlated asymmetric packing of four core residues in distinct, standard rotamers is associated with a small shift in the helix register. At the C terminus, the helices splay apart and interact with a symmetry-related dimer in the crystal to form a short, anti-parallel, four-helix bundle. N-terminal fraying and C-terminal splaying of the helices, as well as the asymmetry and helix register shift describe unprecedented dynamic excursions of coiled coils. The low stability of APC-55 and divergence from the expected coiled-coil fold support the suggestion that the APC dimerization domain may extend beyond the first 55 residues.  相似文献   

20.
Recently, we have shown that a cancer causing truncation in adenomatous polyposis coli (APC) (APC(1-1450)) dominantly interferes with mitotic spindle function, suggesting APC regulates microtubule dynamics during mitosis. Here, we examine the possibility that APC mutants interfere with the function of EB1, a plus-end microtubule-binding protein that interacts with APC and is required for normal microtubule dynamics. We show that siRNA-mediated inhibition of APC, EB1, or APC and EB1 together give rise to similar defects in mitotic spindles and chromosome alignment without arresting cells in mitosis; in contrast inhibition of CLIP170 or LIS1 cause distinct spindle defects and mitotic arrest. We show that APC(1-1450) acts as a dominant negative by forming a hetero-oligomer with the full-length APC and preventing it from interacting with EB1, which is consistent with a functional relationship between APC and EB1. Live-imaging of mitotic cells expressing EB1-GFP demonstrates that APC(1-1450) compromises the dynamics of EB1-comets, increasing the frequency of EB1-GFP pausing. Together these data provide novel insight into how APC may regulate mitotic spindle function and how errors in chromosome segregation are tolerated in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号