首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabies is a fatal viral encephalitis which is transmitted by exposure to the bite of rabid animals. Human and equine rabies immunoglobulins are indispensable pharmacological agents for severe bite exposure, as is vaccine. However, several disadvantages, including limited supply, adverse reactions, and high cost, hamper their wide application in developing countries. In the present study, two novel huMabs which neutralize rabies virus were established from vaccinated hyperimmune volunteers using the Epstein‐Barr virus transformation method. One MAb (No. 254), which was subclass IgG3, effectively neutralized fixed rabies viruses of CVS, ERA, HEP‐Flury, and Nishigahara strains and recognized a well‐conserved epitope located in antigenic site II of the rabies virus glycoprotein. No. 254 possessed 68 ng/ml of FRNT50 activity against CVS, 3.7 × 10?7 M of the Kd value, and the enhancing effect of complement‐dependent virolysis. In addition, No. 254 showed effective neutralization potency in vivo in the mouse challenge test. The other MAb, 4D4, was subclass IgM and showed neutralizing activity against CVS and Nishigahara strains. 4D4 recognized a novel antigenic site which is associated with the neurovirulence of rabies, a glycoprotein located between antigenic site I and VI. Both human MAbs against rabies are expected to be utilized as a tool for future post‐exposure prophylaxis.  相似文献   

2.
The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a. Results from this study suggest that these MAbs may have the potential to prevent HCV infection.  相似文献   

3.
Isolation and characterization of human monoclonal antibodies to digoxin.   总被引:1,自引:0,他引:1  
Fab preparations of sheep polyclonal anti-digoxin Abs have proven useful for reversal of the toxic effects of digoxin overdoses in patients. Unfortunately, the use of foreign species proteins in humans is limited because of the potential for immunological responses that include hypersensitivity reactions and acute anaphylaxis. Immunization of recently developed transgenic mice, whose endogenous micro heavy and kappa light chain Ig genes are inactivated and which carry human Ig gene segments, with a digoxin-protein conjugate has enabled us to generate and isolate eight hybridoma cell lines secreting human sequence anti-digoxin mAbs. Six of the mAbs have been partially characterized and shown to have high specificity and low nanomolar affinities for digoxin. In addition, detailed competition binding studies performed with three of these mAbs have shown them to have distinct differences in their digoxin binding, and that all three structural moieties of the drug, the primary digitoxose sugar, steroid, and five-member unsaturated lactone ring, contribute to Ab recognition.  相似文献   

4.
Canine distemper virus (CDV) causes a serious multisystemic disease in dogs and other carnivora. Hemagglutinin (H) protein‐specific antibodies are mainly responsible for protective immunity against CDV infection. In the present study, six neutralizing MAbs to the H protein of CDV were newly obtained and characterized by immunizing BALB/c mice with a recent Chinese field isolate. Competitive binding inhibition assay revealed that they recognized four distinct antigenic regions of the H protein. Immunofluorescence assay and western blotting showed that all MAbs recognize the conformational rather than the linear epitopes of the H protein. Furthermore, in immunofluorescence and virus neutralization assays, two of the MAbs were found to react only with the recent Chinese field isolate and not with older CDV strains, including vaccine strain Onderstepoort, indicating there are neutralization‐related antigenic variations between the recent Chinese field isolate and the older CDV strains examined in this study. The newly established MAbs are useful for differentiating the expanding CDV strains and could be used in immunotherapy and immunodiagnosis against infection with CDV.  相似文献   

5.
Monoclonal antibodies to horseradish peroxidase were obtained. The interaction of two antibody clones with the enzyme was studied. Antibodies of one clone were found to inhibit the enzyme activity during the oxidation of 2.2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) diammonium salt and the cooxidation of luminol and luciferin. The latter was concomitant with a complete inhibition of the peroxidase activity. The values of binding constants as determined by the solid phase immunoenzymatic and homogeneous methods are equal to (1.2 +/- 0.5).10(8) M-1 and (1.8 +/- 0.2).10(11) M-1, respectively.  相似文献   

6.
7.
Monoclonal antibodies to Bordetella pertussis were produced by fusion of mouse myeloma cells and spleen cells of immunized mice. Cell lines were examined for specific antibody production against several crude antigen preparations and lipopolysaccharide. Cross reactivity of monoclonal antibodies was assessed by enzyme immunoassay using cell lysates prepared from Bordetella spp. and several other bacteria. Reactivity of monoclonal antibodies to cell surface components was determined by immunofluorescence microscopy. Monoclonal antibodies represent useful probes to study the antigenic profile and distribution of antigens among various species of Bordetella, as well as specific tools to study the structure and function of B. pertussis virulence factors.  相似文献   

8.
We have isolated a monoclonal antibody, B2, that neutralizes vaccinia virus infection. B2 reacts with a trypsin-sensitive cell surface epitope. B2 does not neutralize infection of herpes simplex virus, suggesting that the B2-reactive epitope is specifically involved in vaccinia virus entry. A survey of 12 different cell lines reveals a correlation between B2 reactivity and susceptibility to vaccinia virus infection. In addition, B2 interferes with vaccinia virus adsorption to target cells. Taken together, the B2-reactive epitope is part of a receptor that appears important for vaccinia virus entry.  相似文献   

9.
Rabies virus antigen-specific human monoclonal antibodies (MAbs) that recognized either viral glycoprotein, ribonucleoprotein, or matrix proteins were generated. Only glycoprotein-specific MAb neutralized a variety of rabies viruses and protected laboratory rodents against lethal rabies virus infection. The determinant recognized by this MAb does not appear to reside in previously defined antigenic sites of the viral glycoprotein.  相似文献   

10.
In this article we report the first topological mapping of neutralizing epitopes of a hepadnavirus. Duck hepatitis B virus is the only hepadnavirus that can replicate and spread from cell to cell in tissue culture. As a result, it is possible to study hepadnaviral neutralization in vitro with this system. To accomplish this goal, we produced a library of monoclonal antibodies against duck hepatitis B virus and identified 12 neutralizing monoclonal antibodies by using an in vitro neutralization assay. The characteristics of six of the neutralizing monoclonal antibodies were further studied by epitope mapping. From the results of competitive binding studies, three distinct neutralizing epitopes were identified on the pre-S polypeptides and one was identified on the S polypeptide. Our findings suggest that antibodies to both the pre-S and S gene products of duck hepatitis B virus can neutralize viral infection in vitro. The pre-S gene product is at least as important as the S gene product in eliciting neutralizing antibodies.  相似文献   

11.
The human immunodeficiency virus Tat regulatory protein is essential for virus replication and pathogenesis. From human peripheral blood mononuclear cells of three Tat toxoid-immunized volunteers, we isolated five Tat-specific human monoclonal antibodies (HMAbs): two full-length immunoglobulin G (IgG) antibodies and three single-chain fragment-variable (scFv) antibodies. The two IgGs were mapped to distinct epitopes within the basic region of Tat, and the three scFvs were mapped to the N-terminal domain of Tat. The three scFvs were highly reactive with recombinant Tat in Western blotting or immunoprecipitation, but results were in contrast to those for the two IgGs, which are sensitive to a particular folding of the protein. In transactivation assays, scFvs were able to inhibit both active recombinant Tat and native Tat secreted by a transfected CEM cell line while IgGs neutralized only native Tat. These HMAbs were able to reduce viral p24 production in human immunodeficiency virus type 1 strain IIIB chronically infected cell lines in a dose-dependent manner.  相似文献   

12.
One hundred temperature-sensitive mutants of vaccinia virus WR were isolated from virus that had been mutagenized with 5-bromodeoxyuridine or N-methyl-N'-nitro-N-nitrosoguanidine. A rapid screening procedure based on the ability of vaccinia virus to form plaques under liquid overlay medium was used to identify potential mutants among randomly picked plaque isolates or plaques preselected for their small size after temperature shift-up. The preselection technique resulted in a sixfold increase in the number of successful mutant isolations relative to the number of plaques picked. All of the mutants had efficiencies of plating at 39.5 degrees C relative to that at 33 degrees C of 10(-4) or less, and 33 of 40 produced 10% or less of the amount of virus at the nonpermissive temperature (39.5 degrees C) relative to that at the permissive temperature (33 degrees C). Experiments with the fluorescent DNA binding dye Hoechst 33258 demonstrated that 6 of the 100 mutants failed to form characteristic cytoplasmic DNA factories at 39.5 degrees C. To facilitate the functional grouping of such a large number of mutants, a rapid infectious center assay was developed. Thirty of the mutants were assigned to 16 or 17 complementation-recombination groups by using this assay. Recombination experiments have allowed the construction of a genetic map representing 22 mutants in 12 of these groups.  相似文献   

13.
《MABS-AUSTIN》2013,5(1):69-83
Interleukin-21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope “bins” based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.  相似文献   

14.
Two monoclonal antibodies (MAbs) against the ORF2 protein of the SAR-55 strain of hepatitis E virus (HEV) were isolated by phage display from a cDNA library of chimpanzee (Pan troglodytes) gamma1/kappa antibody genes. Both MAbs, HEV#4 and HEV#31, bound to reduced, denatured open reading frame 2 (ORF2) protein in a Western blot, suggesting that they recognize linear epitopes. The affinities (equilibrium dissociation constants, K(d)) for the SAR-55 ORF2 protein were 1.7 nM for HEV#4 and 5.4 nM for HEV#31. The two MAbs also reacted in an enzyme-linked immunosorbent assay with recombinant ORF2 protein from a heterologous HEV, the Meng strain. Each MAb blocked the subsequent binding of the other MAb to homologous ORF2 protein in indirect competition assays, suggesting that they recognize the same or overlapping epitopes. Radioimmunoprecipitation assays suggested that at least part of the linear epitope(s) recognized by the two MAbs is located between amino acids 578 and 607. MAbs were mixed with homologous HEV in vitro and then inoculated into rhesus monkeys (Macaca mulatta) to determine their neutralizing ability. Whereas all control animals developed hepatitis (elevated liver enzyme levels in serum) and seroconverted to HEV, those receiving an inoculum incubated with either HEV#4 or HEV#31 were not infected. Therefore, each MAb neutralized the SAR-55 strain of HEV in vitro.  相似文献   

15.
Interleukin 21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope “bins” based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.Key words: interleukin 21, IL-21, mAb, human Ig transgenic mice, autoimmunity  相似文献   

16.
Rabbit anti-idiotypic antibodies (alpha Id Ab) were prepared against five murine monoclonal antibodies (mAb) specific for the rabies virus glycoprotein. Four of the mAb were directed against three known, type-specific, neutralizing sites on the glycoprotein, and the other mAb was directed against a topographically uncharacterized, nonneutralizing epitope. An absence of significant cross-reactivity among the alpha Id Ab for heterologous mAb suggested that the alpha Id Ab were highly specific for unique variable region determinants. The binding of three of the five alpha Id Ab to their homologous mAb could be inhibited by rabies virus-soluble glycoprotein, suggesting that the alpha Id Ab possessed subpopulations similar or adjacent to the antigen-binding site of the mAb. Two of the five alpha Id Ab injected into mice elicited a specific virus-neutralizing antibody response. Mechanisms to account for the induction of the virus-neutralizing antibody by alpha Id Ab are discussed.  相似文献   

17.
Balb/С mice were immunized with recombinant Ebola virus glycoprotein. Following the selection, screening, and cloning of murine hybridomas, we obtained five genetically stable clones of monoclonal antibodies GPE118 (IgG), GPE274 (IgM), GPE325 (IgM), GPE463 (IgM), and GPE534 (IgG). These antibodies were isolated and purified from the ascitic fluid of Balb/С mice using Protein G affinity chromatography (for IgG) and euglobulin precipitation (for IgM). To select at least three candidate antibodies for testing in biological assays as components of an antibody cocktail for the prophylaxis and treatment of hemorrhagic fever, we carried out an immunochemical analysis of the epitope specificity of the isolated antibodies. Based on the data of immunoblotting and sandwich ELISA, it became evident that the epitope recognized by GPE 534 differs from the epitopes recognized by the monoclonal antibodies GPE 118 and GPE 325. The last two antibodies also have different epitope specificity: it follows from the immunoblotting data and from the data on the binding of these antibodies with the intact and oxidized (partly deglycosylated) recombinant glycoprotein. For the biological activity studies and the development of recombinant counterparts, we selected three candidate high-affinity monoclonal antibodies GPE 534, GPE 118, and GPE 325.  相似文献   

18.
BALB/c mice were immunized with purified preparations of hepatitis A virus (HAV) isolated after 21 days of growth in LLC-MK2 cells. The HAV antigen was isolated from CsCl gradients and consisted primarily of the following three proteins as analyzed after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining: VP-1 at 33,000 daltons, VP-2 at 29,000 to 30,000 daltons, and VP-3 at 27,000 daltons. The spleen cells isolated from two BALB/c mice, immunized with two inoculations of HAV, were fused with SP 2/0 myeloma cells and grown in hypoxanthine-aminopterin-thymidine medium. Of 270 hybridomas initially screened, 72 were positive for binding HAV by a noncompetitive radioimmunoassay. All 72 were tested for the ability to neutralize the infectivity of HAV in an in vitro cell culture assay that was adapted for microtiter plates and that used detergent-treated virus for improved neutralization sensitivity and newborn cynomolgus monkey kidney cells for rapid growth. Eighteen hybridomas were positive for neutralization; 16 remained stable. Of the 16, 9 were able to compete with labeled polyclonal serum for binding to HAV. The nine competing hybridomas could be separated into two groups which appear to be directed towards two different sites on HAV and could complement each other in the competitive radioimmunoassay against polyclonal sera. Of the original 16 neutralizing hybridomas, 4 were subcloned through two cycles of limit dilutions. All four monoclonal antibodies retained their original neutralizing and competitive properties; three were immunoglobulin G2a, and one was immunoglobulin G1. All four monoclonal antibodies readily precipitate whole 125I-labeled HAV but are not able to recognize the disrupted proteins of the virus (as tested by immune precipitations of heat- and detergent-disrupted virions or Western blot analyses). However, the heterobifunctional cross-linking reagent toluene-2,4-diisocyanate was used to cross-link purified Fab fragments of two different monoclonal antibodies (2D2 and 6A5) to HAV before disruption. This reagent demonstrated a specific reaction of the monoclonal antibodies to the VP-1 of HAV, suggesting this major surface protein contains at least one of the major neutralization sites for HAV.  相似文献   

19.
A series of mouse monoclonal antibodies (MAbs) to the nonstructural protein 3 (NS3) of hepatitis C virus was prepared. One of these MAbs, designated 8D4, was found to inhibit NS3 protease activity. This inhibition was competitive with respect to the substrate peptide (K(i) = 39 nM) but was significantly decreased by the addition of the NS4A peptide, a coactivator of the NS3 protease. 8D4 also showed marked inhibition of the NS3-dependent cis processing of the NS3/4A polyprotein but had virtually no effect on the succeeding NS3/4A-dependent trans processing of the NS5A/5B polyprotein in vitro. Epitope mapping of 8D4 with a random peptide library revealed a consensus sequence, DxDLV, that matched residues 79 to 83 (DQDLV) of NS3, a region containing the catalytic residue Asp-81. Furthermore, synthetic peptides including this sequence were shown to block the ability of 8D4 to bind to NS3, indicating that 8D4 interacts with the catalytic region of NS3. The data showing decreased inhibition potency of 8D4 against the NS3/4A complex suggest that 8D4 recognizes the conformational state of the protease active site caused by the association of NS4A with the protease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号