首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uterine uptake of amino acids was studied in 10 pregnant sheep with gestational ages of 114-146 days. After recovery from surgery, arterial and uterine venous samples were drawn simultaneously via indwelling catheters and analysed for amino acid and oxygen content. In seven ewes, amino acid concentrations were measured by a chromatographic technique. In four ewes, glutamate and glutamine arterio-venous differences across the uterine and umbilical circulations were measured by an enzymatic method. The uptake of neutral and basic amino acids was 66 mumol/mmol O2 and 17.3 mumol/mmol O2, respectively. Comparison of uterine and umbilical uptake shows that the bulk of the neutral and basic amino acids taken up by the pregnant uterus are transferred to the fetus. there was no significant uptake of acidic amino acids (i.e. glutamate, aspartate and taurine). glutamate was delivered from the fetus to the placenta but excretion of glutamate into the uterine circulation was negligible. Glutamine and asparagine were delivered to the fetus in amount which were two to three times larger than the placental uptake of glutamate and aspartate. Therefore placental conversion of exogenous glutamate and aspartate to glutamine and asparagine cannot account entirely for the fetal uptake of these amino acids.  相似文献   

2.
Control of glutamine synthesis in rat liver   总被引:7,自引:6,他引:1       下载免费PDF全文
1. On perfusion of livers from fed rats with a semi-synthetic medium containing no added amino acids there is a rapid release of glutamine during the first 15min (15.6+/-0.8mumol/h per g wet wt.; mean+/-s.e.m. of 35 experiments), followed by a low linear rate of production (3.6+/-0.3mumol/h per g wet wt.; mean+/-s.e.m. of three experiments). The rapid initial release can be accounted for as wash-out of preexisting intracellular glutamine. 2. Addition of readily permeating substrates, or substrate combinations, giving rise to intracellular glutamate or ammonia, or both, did not appreciably increase the rate of glutamine production over the endogenous rate. The maximum rate obtained was from proline plus alanine; even then the rate represented less than one-fortieth of the capacity of glutamine synthetase measured in vitro. 3. Complete inhibition of respiration in the perfusions [no erythrocytes in the medium; 1mm-cyanide; N(2)+CO(2) (95:5) in the gas phase] or perfusion with glutamine synthetase inhibitors [l-methionine dl-sulphoximine; dl-(+)-allo-delta-hydroxylysine] abolishes the low linear rate of glutamine synthesis, but not the initial rapid release of glutamine. 4. In livers from 48h-starved rats initial release (0-15min) of glutamine was decreased (10.6+/-1.1mumol/h per g wet wt.; mean+/-s.e.m. of 11 experiments) and the subsequent rate of glutamine production was lower than in livers from fed rats. Again proline plus alanine was the only substrate combination giving an increase significantly above the endogenous rate. 5. The rate of glutamine synthesis de novo by the liver is apparently unrelated to the tissue content of glutamate or ammonia. 6. The blood glutamine concentration is increased by 50% within 1h of elimination of the liver from the circulation of rats in vivo. 7. There is an output of glutamine by the brain under normal conditions; the mean arterio-venous difference for six rats was 0.023mumol/ml. 8. The high potential activity of liver glutamine synthetase appears to be inhibited by some unknown mechanism: the function of the liver under normal conditions is probably the disposal of glutamine produced by extrahepatic tissues.  相似文献   

3.
Cortisol induces perinatal hepatic gluconeogenesis in the lamb.   总被引:1,自引:0,他引:1  
To examine the influence of a prenatal increase in plasma cortisol concentration on perinatal initiation of hepatic gluconeogenesis, we infused cortisol into seven fetal sheep at 137-140 days gestation. 14C-Lactate provided tracer substrate for estimation of gluconeogenesis. We measured hepatic blood flow using radionuclide-labeled microspheres. After delivery, fetal arterial blood glucose concentration (1.33 +/- 0.4 mmol/l) increased transiently, but returned to fetal levels within 1 h after delivery. Substantial hepatic gluconeogenesis was induced in the fetus after cortisol infusion, averaging 23.4 +/- 12.2 mumol/min/100 g liver (7.8 +/- 4.4 mumol/min/kg fetal weight). Fetal hepatic glucose output was 44.4 +/- 17.7 mumol/min/100 g liver. Hepatic glucose output did not change after delivery; estimated gluconeogenesis decreased immediately, then increased by 6 h after delivery. Lactate supply to the liver fell substantially, from 1.1 +/- 0.4 mmol/min/100 g in the fetus to 0.24 +/- 0.09 at 1 h after delivery. Lactate flux across the liver decreased from 75.3 +/- 23 mumol/min/100 g in the fetus to 20.2 +/- 15.7 at 1 h after delivery. Hepatic lactate flux was significantly related to gluconeogenesis (r = 0.734, P = 0.0001). We conclude that cortisol induces substantial hepatic gluconeogenesis in fetal sheep near term. After delivery, there appears to be a transient decline in gluconeogenesis from lactate, which may be secondary to limited hepatic oxygen and substrate supply. Onset of gluconeogenesis in the fetus fails to sustain increases in either fetal or postnatal blood glucose concentrations.  相似文献   

4.
We wished to examine the effects of diabetes on muscle glutamine kinetics. Accordingly, female Wistar rats (200 g) were made diabetic by a single injection of streptozotocin (85 mg/kg) and studied 4 days later; control rats received saline. In diabetic rats, glutamine concentration of gastrocnemius muscle was 33% less than in control rats: 2.60 +/- 0.06 mumol/g vs. 3.84 +/- 0.13 mumol/g (P < 0.001). In gastrocnemius muscle, glutamine synthetase activity (Vmax) was unaltered by diabetes (approx. 235 nmol/min per g) but glutaminase Vmax increased from 146 +/- 29 to 401 +/- 94 nmol/min per g; substrate Km values of neither enzyme were affected by diabetes. Net glutamine efflux (A-V concentration difference x blood flow) from hindlimbs of diabetic rats in vivo was greater than control values (-30.0 +/- 3.2 vs. -1.9 +/- 2.6 nmol/min per g (P < 0.001)) and hindlimb NH3 uptake was concomitantly greater (about 27 nmol/min per g). The glutamine transport capacity (Vmax) of the Na-dependent System Nm in perfused hindlimb muscle was 29% lower in diabetic rats than in controls (820 +/- 50 vs. 1160 +/- 80 nmol/min per g (P < 0.01)), but transporter Km was the same in both groups (9.2 +/- 0.5 mM). The difference between inward and net glutamine fluxes indicated that glutamine efflux in perfused hindlimbs was stimulated in diabetes at physiological perfusate glutamine (0.5 mM); ammonia (1 mM in perfusate) had little effect on net glutamine flux in control and diabetic muscles. Intramuscular Na+ was 26% greater in diabetic (13.2 mumol/g) than control muscle, but muscle K+ (100 mumol/g) was similar. The accelerated rate of glutamine release from skeletal muscle and the lower muscle free glutamine concentration observed in diabetes may result from a combination of: (i), a diminished Na+ electrochemical gradient (i.e., the net driving force for glutamine accrual in muscle falls); (ii), a faster turnover of glutamine in muscle and (iii), an increased Vmax/Km for sarcolemmal glutamine efflux.  相似文献   

5.
In unstressed, normoglycaemic fetal lambs, the liver produces little glucose, and gluconeogenesis is insignificant. Indirect measurements have suggested that the fetus may produce glucose endogenously during hypoglycaemia induced by prolonged maternal starvation. In eight fetal lambs we directly measured total and radiolabelled substrate concentration differences across the liver to determine whether the fetal liver produces glucose after four days of fasting-induced hypoglycaemia. Simultaneously we measured umbilical glucose uptake and fetal glucose utilization. Glucose concentrations in ewes (1.78 +/- 0.44 mmol.-1) and fetuses (0.61 +/- 0.17 mmol.l-1) were decreased. Fetal glucose utilization rate (21.7 +/- 8.9 mumol.min-1.kg-1) was not significantly different from umbilical glucose uptake (17.2 +/- 8.9 mumol.min-1.kg-1). Hepatic glucose production (8.9 +/- 17.2 mumol.min-1.100 g-1) and gluconeogenesis (6.1 +/- 4.4 mumol.min-1.100 g-1) were present, but could account for only 13% and 8% of fetal glucose requirements, respectively. To determine whether glucose output by the fetal liver was limited by substrate availability, we infused lactate, acetate, and acetone into the umbilical veins of four fasted animals, increasing hepatic substrate delivery. Hepatic glucose output did not increase during infusion of gluconeogenic substrates, indicating that substrate availability did not limit gluconeogenesis. We conclude that the gluconeogenic pathway is intact in late-gestation fetal lambs and that the fetal liver is capable of gluconeogenesis. However, the primary change in fetal metabolism during maternal starvation is the reduction in fetal glucose utilization, obviating the need for substantial hepatic glucose production. The factors stimulating this modest increase in fetal hepatic glucose production remain to be elucidated.  相似文献   

6.
There was net uptake of branched-chain keto acids by the fetus from the umbilical circulation. Mean fetal uptake of the 3 keto acids 2-keto isovalerate, 2-keto isocaproate and 2-keto methylvalerate was 1.8 mumol/min per kg of fetus. The concentrations in the umbilical vein for these keto acids were 10.9 +/- 3.8 microM (mean +/- SD: 2-keto isovalerate), 19.7 +/- 6.1 microM (2-keto isocaproate) and 14.8 +/- 5.3 microM (2-keto methylvalerate) respectively. The coefficients of extraction for the same keto acids were 17.2%, 16.8% and 11.9% respectively. Fetal uptakes (both mumol/min and mumol/min per kg fetus) were positively correlated with umbilical supply. There were concentration gradients across the placenta, with fetal concentration: maternal concentration ratios of 3.3 +/- 1.5 for 2-keto isovalerate, 2.1 +/- 0.8 for 2-keto isocaproate and 1.3 +/- 0.6 for 2-keto methylvalerate. The net release of 2-keto acids into the umbilical circulation may conserve the carbon skeleton of branched-chain amino acids for fetal metabolism and growth. In the uterine circulation there was not a consistent pattern of release from or uptake by the uteroplacental tissues. It is suggested that branched-chain keto acids may contribute to fetal growth or energy metabolism.  相似文献   

7.
The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.  相似文献   

8.
Intravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanisms, hepatic amino acid uptake and conversion of L-[1-(13)C]glutamine to L-[1-(13)C]glutamate and (13)CO(2) were measured in six sheep fetuses before and in the last 2 h of a 26-h Dex infusion. Dex decreased hepatic glutamine and alanine uptakes (P < 0.01) and hepatic glutamate output (P < 0.001). Hepatic outputs of the glutamate (R(Glu,Gln)) and CO(2) formed from plasma glutamine decreased to 21 (P < 0.001) and 53% (P = 0.009) of control, respectively. R(Glu,Gln), expressed as a fraction of both outputs, decreased (P < 0.001) from 0.36 +/- 0.02 to 0.18 +/- 0.04. Hepatic glucose output remained virtually zero throughout the experiment. We conclude that Dex decreases fetal hepatic glutamate output by increasing the routing of glutamate carbon into the citric acid cycle and by decreasing the hepatic uptake of glucogenic amino acids.  相似文献   

9.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

10.
Since large volumes of nutrient rich amniotic fluid are swallowed by the fetus, it has been suggested that intestinal digestion and absorption contribute significantly to fetal nutrition. To see if nutrients are being gained across the intestine, we measured blood flow and intestinal arteriovenous concentration differences of glucose, alpha-amino nitrogen, lactate, fructose and oxygen in eleven third trimester fetal sheep with chronically implanted vascular catheters. We found that in fetal blood circulating through the intestine nutrient concentration decreased significantly with arterio-venous concentration differences for glucose of 0.78 +/- 0.21 (SEM) mg/dl (P < 0.002), for alpha-amino nitrogen of 0.52 +/- 0.15 mg/dl (P < 0.005), for lactate of 0.68 +/- 0.24 mg/dl (P < 0.05) and for oxygen of 1.50 +/- 0.08 ml/dl (P < 0.001). Fructose concentration did not change. Blood flow to the fetal intestine averaged 89.92 +/- 7.16 ml/min and the intestine consumed 0.74 +/- 0.24 mg of glucose, 0.43 +/- 0.17 mg of alpha-amino nitrogen, 0.83 +/- 0.28 mg of lactate and 1.37 +/- 0.14 ml of oxygen per minute. Compared to previously published values for the umbilical uptake of nutrients the fetal intestine metabolizes about 4% of the glucose, 6% of the alpha-amino nitrogen, 13% of the lactate and 6% of the oxygen obtained across the umbilical circulation. Intestinal absorption does not appear to serve as a source of simple nutrients for the rest of the fetus, in fact intestinal metabolism extracts significant amounts of nutrients from fetal blood.  相似文献   

11.
Glutamate stimulates resting ventilation by altering neural excitability centrally. Hypoxia increases central ventilatory drive through peripheral chemoreceptor stimulation and may also alter cerebral perfusion and glutamate metabolism locally. Therefore the effect of hypoxia and peripheral chemodenervation on cerebrospinal fluid (CSF) transfer rate of in vivo tracer amidated central nervous system glutamate was studied in intact and chemodenervated pentobarbital-anesthetized dogs during normoxia and after 1 h of hypoxia induced with 10 or 12% O2 in N2 breathing at constant expired ventilation and arterial CO2 tension. Chemodenervation was performed by bilateral sectioning of the carotid body nerves and cervical vagi. CSF transfer rates of radiotracer 13NH4+ and [13N]glutamine synthesized via the reaction, glutamate + NH4(+)----glutamine, in brain glia were measured during normoxia and after 1 h of hypoxia. At normoxia, maximal glial glutamine efflux rate jm = 103.3 +/- 11.2 (SE) mumol.l-1.min-1 in all animals. After 1 h of hypoxia in intact animals, jm = 78.4 +/- 10.0 mumol.l-1.min-1. In denervated animals, jm was decreased to 46.3 +/- 4.3 mumol.l-1.min-1. During hypoxia, mean cerebral cortical glutamate concentration was higher in denervated animals (9.98 +/- 1.43 mumol/g brain tissue) than in intact animals (7.63 +/- 1.82 mumol/g brain tissue) and corresponding medullary glutamate concentration tended to be higher in denervated animals. There were no differences between mean glutamine and gamma-aminobutyric acid concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Alanine and glutamine constitute the two most important nitrogen carriers released from the muscle. We studied the intracellular amino acid transport kinetics and protein turnover in nine end-stage renal disease (ESRD) patients and eight controls by use of stable isotopes of phenylalanine, alanine, and glutamine. The amino acid transport kinetics and protein turnover were calculated with a three-pool model from the amino acid concentrations and enrichment in the artery, vein, and muscle compartments. Muscle protein breakdown was more than synthesis (nmol.min(-1).100 ml leg(-1)) during hemodialysis (HD) (169.8 +/- 20.0 vs. 125.9 +/- 21.8, P < 0.05) and in controls (126.9 +/- 6.9 vs. 98.4 +/- 7.5, P < 0.05), but synthesis and catabolism were comparable pre-HD (100.7 +/- 15.7 vs. 103.4 +/- 14.8). Whole body protein catabolism decreased by 15% during HD. The intracellular appearance of alanine (399.0 +/- 47.1 vs. 243.0 +/- 34.689) and glutamine (369.7 +/- 40.6 vs. 235.6 +/- 27.5) from muscle protein breakdown increased during dialysis (nmol.min(-1).100 ml leg(-1), P < 0.01). However, the de novo synthesis of alanine (3,468.9 +/- 572.2 vs. 3,140.5 +/- 467.7) and glutamine (1,751.4 +/- 82.6 vs. 1,782.2 +/- 86.4) did not change significantly intradialysis (nmol.min(-1).100 ml leg(-1)). Branched-chain amino acid catabolism (191.8 +/- 63.4 vs. -59.1 +/- 42.9) and nonprotein glutamate disposal (347.0 +/- 46.3 vs. 222.3 +/- 43.6) increased intradialysis compared with pre-HD (nmol.min(-1).100 ml leg(-1), P < 0.01). The mRNA levels of glutamine synthase (1.45 +/- 0.14 vs. 0.33 +/- 0.08, P < 0.001) and branched-chain keto acid dehydrogenase-E2 (3.86 +/- 0.48 vs. 2.14 +/- 0.27, P < 0.05) in the muscle increased during HD. Thus intracellular concentrations of alanine and glutamine are maintained during HD by augmented release of the amino acids from muscle protein catabolism. Although muscle protein breakdown increased intradialysis, the whole body protein catabolism decreased, suggesting central utilization of amino acids released from skeletal muscle.  相似文献   

13.
单侧迷路破坏后大鼠前庭神经内侧核区氨基酸含量的变化   总被引:2,自引:0,他引:2  
Yu HL  An Y  Jiang HY  Jin QH  Jin YZ 《生理学报》2007,59(1):71-78
本实验用脑部微量透析法和高效液相色谱法观察单侧迷路破坏(unilateral labyrinthectomy,经利多卡因或对氨基苯胂酸盐预处理以阻断单侧外周前庭器官)后大鼠同侧及对侧前庭神经内侧核(medial vestibular nucleus,MVN)区部分氨基酸(天冬氨酸、谷氨酸、谷氨酰胺、甘氨酸、牛磺酸和丙氨酸)含量的变化,以了解前庭代偿的部分神经化学机制.实验观察到,对照组大鼠MVN区天冬氨酸、谷氨酸、谷氨酰胺、甘氨酸、牛磺酸和丙氨酸浓度分别为(6.15±0.59),(18.13±1.21),(33.73±1.67),(9.26±0.65),(9.56±0.77)和(10.07±0.83)pmol/8 μL透析样本.左侧中耳内灌注2%利多卡因后10 min,同侧MVN区天冬氨酸、谷氨酸含量立即减少(P<0.05),牛磺酸含量增加(P<0.05);对侧MVN区谷氨酸含量立即增加(P<0.05),甘氨酸和丙氨酸含量减少;双侧核团间谷氨酸、甘氨酸和丙氨酸含量失衡.而用对氨基苯胂酸盐永久阻断单侧前庭器官2周后,同侧MVN区谷氨酸和丙氨酸含量减少,谷氨酰胺含量增高;对侧MVN区谷氨酸含量也减少;同侧MVN区谷氨酰胺含量明显高于对侧MVN区.结果提示,单侧迷路破坏后双侧MVN区氨基酸含量立即失去平衡,随着前庭代偿的进展,此差异减少,但是在前庭代偿后却出现双侧前庭核区谷氨酰氨的含量失衡,说明在前庭代偿过程中氨基酸含量变化起着重要作用.  相似文献   

14.
The source of nitrogen (N) for the de novo synthesis of brain glutamate, glutamine and GABA remains controversial. Because leucine is readily transported into the brain and the brain contains high activities of branched-chain aminotransferase (BCAT), we hypothesized that leucine is the predominant N-precursor for brain glutamate synthesis. Conscious and unstressed rats administered with [U-13C] and/or [15N]leucine as additions to the diet were killed at 0-9 h of continuous feeding. Plasma and brain leucine equilibrated rapidly and the brain leucine-N turnover was more than 100%/min. The isotopic dilution of [U-13C]leucine (brain/plasma ratio 0.61 +/- 0.06) and [15N]leucine (0.23 +/- 0.06) differed markedly, suggesting that 15% of cerebral leucine-N turnover derived from proteolysis and 62% from leucine synthesis via reverse transamination. The rate of glutamate synthesis from leucine was 5 micro mol/g/h and at least 50% of glutamate-N originally derived from leucine. The enrichment of [5-15N]glutamine was higher than [15N]ammonia in the brain, indicating glial ammonia generation from leucine via glutamate. The enrichment of [15N]GABA, [15N]aspartate, [15N]glutamate greater than [2-15N]glutamine suggests direct incorporation of leucine-N into both glial and neuronal glutamate. These findings provide a new insight for the role of leucine as N-carrier from the plasma pool and within the cerebral compartments.  相似文献   

15.
Cycloheximide at concentrations above 18 muM produced a 93% inhibition of total protein synthesis measured by valine incorporation in the perfused rat liver. Rates of protein degradation were estimated by perfusing livers prelabeled in vivo with L-[1-14C]valine with medium containing 15 mM L-valine. Thus labeled valine released from liver protein during perfusion was greatly diluted and reincorporation of label was minimized. Cycloheximide at 18 muM inhibited protein degradation by over 60%, after a delay of 15-20 min. Associated with these effects were dose-dependent increases in the rates of glucose and urea production. Glucose production increased 3 fold, from 0.54 +/- 0.07 in control to 1.85 +/- 0.24 mumol/min/100 g rat in cycloheximide-treated livers. Urea production increased from 0.24 +/- 0.02 to 0.62 +/- 0.06 mumol/min/100 g rat. No changes in liver glycogen or cyclic AMP content were seen. The data suggest that inhibition of protein synthesis provides an increased availability of intra-cellular amino acids and that many of these are rapidly degraded, yielding urea and glucose. This is supported by the fact that intracellular alanine levels were significantly increased following cycloheximide treatment. It is possible that the inhibition of protein degradation by cycloheximide is due to altered intra-cellular pools of amino acids or their metabolites.  相似文献   

16.
We investigated the pulmonary vascular effects of prophylactic use of sildenafil, a specific phosphodiesterase-5 inhibitor, in late-gestation fetal lambs with chronic pulmonary hypertension. Fetal lambs were operated on at 129 +/- 1 days gestation (term = 147 days). Ductus arteriosus (DA) was compressed for 8 days to cause chronic pulmonary hypertension. Fetuses were treated with sildenafil (24 mg/day) or saline. Pulmonary vascular responses to increase in shear stress and in fetal PaO2 were studied at, respectively, day 4 and 6. Percent wall thickness of small pulmonary arteries (%WT) and the right ventricle-to-left ventricle plus septum ratio (RVH) were measured after completion of the study. In the control group, DA compression increased PA pressure (48 +/- 5 to 72 +/- 8 mmHg, P < 0.01) and pulmonary vascular resistance (PVR) (0.62 +/- 0.08 to 1.15 +/- 0.11 mmHg x ml(-1) x min(-1), P < 0.05). Similar increase in PAP was observed in the sildenafil group, but PVR did not change significantly (0.54 +/- 0.06 to 0.64 +/- 0.09 mmHg x ml(-1) x min(-1)). Acute DA compression, after brief decompression, elevated PVR 25% in controls and decreased PVR 35% in the sildenafil group. Increased fetal PaO2 did not change PVR in controls but decreased PVR 60% in the sildenafil group. %WT and RVH were not different between groups. Prophylactic sildenafil treatment prevents the rise in pulmonary vascular tone and altered vasoreactivity caused by DA compression in fetal lambs. These results support the hypothesis that elevated PDE5 activity is involved in the consequences of chronic pulmonary hypertension in the perinatal lung.  相似文献   

17.
Insulin-induced alterations in amino acid metabolism in the fetal lamb   总被引:1,自引:0,他引:1  
To investigate the role of insulin in modulation of fetal amino acid metabolism, insulin infusions were performed in 10 chronically-catheterized fetal lambs. Fetal insulin infusion caused a dose related fall in the arterial blood concentrations of 13 of 15 amino acids studied as well as a 15-25% decrease in total amino acid concentration. Fetal lambs exhibited a biphasic response of umbilical total amino acid uptake when compared to fetal blood insulin concentration, i.e., at achieved fetal insulin concentrations less than 100 microU/ml, umbilical uptake of 9 specific amino acids as well as summed amino acid uptake from the umbilical circulation were depressed, but at insulin concentrations of 100-350 microU/ml, amino acid uptakes were similar to or above control values. Insulin infusion also caused a drastic diminution in the rate of fetal urea excretion. These findings suggest that insulin acts in the fetus to depress amino acid catabolism, thus altering amino acid extraction and uptake. Depressed protein catabolism with or without enhanced amino acid uptake would have the theoretical effect of stimulation of net protein synthesis with a shift toward use of nonprotein substrates for energy purposes.  相似文献   

18.
Perinatal onset of hepatic gluconeogenesis in the lamb   总被引:2,自引:0,他引:2  
Hepatic gluconeogenesis does not occur in the unstressed fetal sheep. After birth, in addition to glycogenolysis, the newborn lamb must eventually initiate gluconeogenesis to maintain glucose homeostasis. The regulation and time course of this transition have not been defined. We studied six animals in an acute preparation before and after delivery to determine hepatic lactate and glucose uptake, hepatic gluconeogenesis from lactate, and plasma catecholamine and cortisol concentrations. After a priming dose, continuous infusion of [14C]lactate provided tracer substrate for calculations of gluconeogenesis in the fetus and then for ten hours after delivery in the newborn lamb. The radionuclide-labelled microsphere method was used to measure hepatic blood flow. Appreciable gluconeogenesis was not present during the fetal period. Following delivery, the newborn lambs began to produce significant quantities of glucose from lactate at 6 h of age (1.37 +/- 0.84 mg.min-1.100 g-1 min-1 x 100 g-1 liver), when gluconeogenesis from lactate accounted for 22% of hepatic glucose output. Despite the onset of gluconeogenesis, postnatal lambs had blood glucose concentrations that remained less than fetal levels of 23.4 +/- 12.1 mg/dl for the duration of the 10-h study. Plasma norepinephrine concentration was 1380 +/- 1145 pg/ml in the fetus and fell by 2 h after birth. Plasma epinephrine concentrations were highest at 15 min after birth (205 +/- 262 pg/ml), but remained quite low for the remainder of the study. Plasma cortisol concentrations did not vary over the course of study, ranging from 40 to 50 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The amino acids glutamate, aspartate, gamma-aminobutyric acid (GABA), and glutamine were measured as their dansyl derivatives in whole brain and specific brain regions by a sensitive double-labelling technique at various times during the development of hypoglycaemic encephalopathy. Hypoglycaemia was induced by administration of insulin (100 i.u./kg) to 24-h fasted rats. No significant changes in glutamate, GABA, or glutamine were detected in whole brain at any time up to and including the onset of hypoglycaemic convulsions. In cerebral cortex, however, GABA levels were reduced to 65% or normal prior to the appearance of neurological symptoms of hypoglycaemia. Onset of symptoms (severe catalepsy and loss of righting reflex, but before the onset of convulsions) was accompanied by marked decreases of glutamate and glutamine in striatum and hippocampus. These regions, in addition to cerebral cortex, show the greatest vulnerability to hypoglycaemic insult, according to previous anatomical studies. Aspartate levels were significantly increased (p less than 0.01) in the cerebral cortex of convulsing animals, confirming a previous report. No changes were detectable in any of the amino acids studied in medulla-pons at any time during the progression of hypoglycaemia. Cerebral cortex and striatum showed a selective net loss of amino acids (2.2 and 3.5 mumol/g. respectively) prior to the onset of insulin-hypoglycaemic convulsions.  相似文献   

20.
The contents of alanine, proline, glycine, GABA, glutamate, and aspartate were measured in four bundles of axons (designated areas A through D) from the circumesophageal connective of the lobster (Homarus americanus). The contents of these amino acids were also determined in individual axons within specific bundles and in the external sheath covering the circumesophageal connective. Within the nerve bundles the levels of aspartate were highest of the amino acids measured, ranging from 1.95 +/- 0.12 mumol/mg protein in area C to 7.55 +/- 0.54 mumol/mg protein in area B. On the other hand, GABA had the lowest value in the four bundles; its highest level was found in area C (0.083 +/- 0.006 mu mol/mg protein) and the lowest in area B (none detected). The content of glycine ranged from 1.63 +/- 0.14 (area C) to 2.52 +/- 0.32 mumol/mg protein in area A; that for glutamate ranged from 0.390 +/- 0.019 (area C) to 1.01 +/- 1.03 (area B). The contents of alanine and proline changed relatively little from bundle-to-bundle. The content of aspartate was the highest of any of the amino acids assayed in individual axons (with diameters in the range of 40 to 65 mu) dissected from areas B and C. Glycine had the next highest content followed in order by glutamate, proline, and alanine. GABA was not detected in these axons. With the exception of GABA (which could not be detected), aspartate had the lowest level (0.066 +/- 0.017) and glycine had the highest level (2.00 +/- 0.498 mumol/mg protein) in the external sheath covering the the circumesophageal connective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号