首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Biophysical properties of human antibody variable domains   总被引:4,自引:0,他引:4  
There are great demands on the stability, expression yield and resistance to aggregation of antibody fragments. To untangle intrinsic domain effects from domain interactions, we present first a systematic evaluation of the isolated human immunoglobulin variable heavy (V(H)) and light (V(L)) germline family consensus domains and then a systematic series of V(H)-V(L) combinations in the scFv format. The constructs were evaluated in terms of their expression behavior, oligomeric state in solution and denaturant-induced unfolding equilibria under non-reducing conditions. The seven V(H) and seven V(L) domains represent the consensus sequences of the major human germline subclasses, derived from the Human Combinatorial Antibody Library (HuCAL). The isolated V(H) and V(L) domains with the highest thermodynamic stability and yield of soluble protein were V(H)3 and V(kappa)3, respectively. Similar measurements on all domain combinations in scFv fragments allowed the scFv fragments to be classified according to thermodynamic stability and in vivo folding yield. The scFv fragments containing the variable domain combinations H3kappa3, H1bkappa3, H5kappa3 and H3kappa1 show superior properties concerning yield and stability. Domain interactions diminish the intrinsic differences of the domains. ScFv fragments containing V(lambda) domains show high levels of stability, even though V(lambda) domains are surprisingly unstable by themselves. This is due to a strong interaction with the V(H) domain and depends on the amino acid sequence of the CDR-L3. On the basis of these analyses and model structures, we suggest possibilities for further improvement of the biophysical properties of individual frameworks and give recommendations for library design.  相似文献   

2.
The antigen binding site of antibodies usually comprises associated heavy (V(H)) and light (V(L)) chain variable domains, but in camels and llamas, the binding site frequently comprises the heavy chain variable domain only (referred to as V(HH)). In contrast to reported human V(H) domains, V(HH) domains are well expressed from bacteria and yeast, are readily purified in soluble form and refold reversibly after heat-denaturation. These desirable properties have been attributed to highly conserved substitutions of the hydrophobic residues of V(H) domains, which normally interact with complementary V(L) domains. Here, we describe the discovery and characterisation of an isolated human V(H) domain (HEL4) with properties similar to those of V(HH) domains. HEL4 is highly soluble at concentrations of > or =3 mM, essentially monomeric and resistant to aggregation upon thermodenaturation at concentrations as high as 56 microM. However, in contrast to V(HH) domains, the hydrophobic framework residues of the V(H):V(L) interface are maintained and the only sequence changes from the corresponding human germ-line segment (V3-23/DP-47) are located in the loops comprising the complementarity determining regions (CDRs). The crystallographic structure of HEL4 reveals an unusual feature; the side-chain of a framework residue (Trp47) is flipped into a cavity formed by Gly35 of CDR1, thereby increasing the hydrophilicity of the V(H):V(L) interface. To evaluate the specific contribution of Gly35 to domain properties, Gly35 was introduced into a V(H) domain with poor solution properties. This greatly enhanced the recovery of the mutant from a gel filtration matrix, but had little effect on its ability to refold reversibly after heat denaturation. Our results confirm the importance of a hydrophilic V(H):V(L) interface for purification of isolated V(H) domains, and constitute a step towards the design of isolated human V(H) domains with practical properties for immunotherapy.  相似文献   

3.
In a systematic study of V gene families carried out with consensus V(H) and V(L) domains alone and in combinations in the scFv format, we found comparatively low expression yields and lower cooperativity in equilibrium unfolding in antibody fragments containing V(H) domains of human germline families 2, 4, and 6. From an analysis of the packing of the hydrophobic core, the completeness of charge clusters, the occurrence of unsatisfied hydrogen bonds, and residues with low beta-sheet propensities, positive Phi angles, and exposed hydrophobic side chains, we pinpointed residues potentially responsible for the unsatisfactory properties of these germline-encoded sequences. Several of those are in common between the domains of the even-numbered subgroups, but do not occur in the odd-numbered ones. In this study, we have systematically exchanged those residues alone and in combination in two different scFvs using the V(H)6 framework, and we describe their effect on equilibrium stability and folding yield. We improved the stability by 20.9 kJ/mol and the expression yield by a factor of 4 and can now use these data to rationally engineer antibodies derived from this and similar germline families for better biophysical properties. Furthermore, we provide an improved design for libraries exploiting the significant additional diversity provided by these frameworks. Both antibodies studied here completely retain their binding affinity, demonstrating that the CDR conformations were not affected.  相似文献   

4.
Camelids produce functional "heavy chain" antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446-448]. It has been shown that the variable domains of these heavy chain antibodies (the V(HH) fragments) are functional at or after exposure to high temperatures, in contrast to conventional antibodies [Linden van der, R. H. J., et al. (1999) Biochim. Biophys. Acta 1431, 37-44]. For a detailed understanding of the higher thermostability of these V(HH) fragments, knowledge of their structure and conformational dynamics is required. As a first step toward this goal, we report here the essentially complete (1)H and (15)N NMR backbone resonance assignments of a llama V(HH) antibody fragment, and an extensive analysis of the structure at higher temperatures. The H-D exchange NMR data at 300 K indicate that the framework of the llama V(HH) fragment is highly protected with a DeltaG(ex) of >5.4 kcal/mol, while more flexibility is observed for surface residues, particularly in the loops and the two outer strands (residues 4-7, 10-13, and 58-60) of the beta-sheet. The CD data indicate a reversible, two-state unfolding mechanism with a melting transition at 333 K and a DeltaH(m) of 56 kcal/mol. H-D exchange studies using NMR and ESI-MS show that below 313 K exchange occurs through local unfolding events whereas above 333 K exchange mainly occurs through global unfolding. The lack of a stable core at high temperatures, observed for V(HH) fragments, has also been observed for conventional antibody fragments. The main distinction between the llama V(HH) fragment and conventional antibody fragments is the reversibility of the thermal unfolding process, explaining its retained functionality after exposure to high temperatures.  相似文献   

5.
We report a comprehensive analysis of sequence features that allow for the production of autonomous human heavy chain variable (V(H)) domains that are stable and soluble in the absence of a light chain partner. Using combinatorial phage-displayed libraries and conventional biophysical methods, we analyzed the entire former light chain interface and the third complementarity determining region (CDR3). Unlike the monomeric variable domains of camelid heavy chain antibodies (V(H)H domains), in which autonomous behavior depends on interactions between the hydrophobic former light chain interface and CDR3, we find that the stability of many in vitro evolved V(H) domains is essentially independent of the CDR3 sequence and instead derives from mutations that increase the hydrophilicity of the former light chain interface by replacing exposed hydrophobic residues with structurally compatible hydrophilic substitutions. The engineered domains can be expressed recombinantly at high yield, are predominantly monomeric at high concentrations, unfold reversibly, and are even more thermostable than typical camelid V(H)H domains. Many of the stabilizing mutations are rare in natural V(H) and V(H)H domains and thus could not be predicted by studying natural sequences and structures. The results demonstrate that autonomous V(H) domains with structural properties beyond the scope of natural frameworks can be derived by using non-natural mutations, which differ from those found in camelid V(H)H domains. These findings should enable the development of libraries of synthetic V(H) domains with CDR3 diversities unconstrained by structural demands.  相似文献   

6.
The folding of immunoglobulin domains requires the formation of a conserved structural disulfide. Therefore, as a general rule, they cannot be functionally expressed in the reducing environment of the cellular cytoplasm. We have previously reported that stability engineering can lead to the cytoplasmic expression of functional immunoglobulin V(L) domains. Here we apply rational stability engineering by consensus sequence analysis to V(H) domains. Isolated V(H) domains tend to aggregate more easily than V(L) domains; they do not refold quantitatively and are generally more difficult to handle in vitro. To overcome these problems, we successfully predicted and experimentally verified several stabilizing point mutations in the V(H) domain of a designed, catalytic Fv fragment. The effect of single mutations was additive, and they could be combined in a prototype domain with significantly improved stability against chemical denaturation and a 20-fold increased half time of irreversible thermal denaturation, at physiological temperature. This stabilized, isolated V(H) domain could be expressed solubly in the reducing cellular cytoplasm of Escherichia coli, at a yield of approximately 1.2 mg/L of shake flask culture. It remains fully functional, as evidenced by the successful reconstitution of an esterolytic Fv fragment with the V(L) domain. This success provides further evidence that consensus sequence engineering is a rational, plannable route to the construction of intrabodies.  相似文献   

7.
Human V(H) domains are promising molecules in applications involving antibodies, in particular, immunotherapy because of their human origin. However, they are, in general, prone to aggregation. Therefore, various strategies have been employed to acquire monomeric human V(H)s. We had previously discovered that filamentous phages displaying engineered monomeric V(H) domains gave rise to significantly larger plaques on bacterial lawns than phages displaying wild type V(H)s with aggregation tendencies. Using plaque size as the selection criterion and a phage-displayed na?ve human V(H) library we identified 15 V(H)s that were monomeric. Additionally, the V(H)s demonstrated good expression yields, good refolding properties following thermal denaturation, resistance to aggregation during long incubation at 37 degrees C, and to trypsin at 37 degrees C. These 15 V(H)s should serve as good scaffolds for developing immunotherapeutics, and the selection method employed here should have general utility for isolating proteins with desirable biophysical properties.  相似文献   

8.
Although the cooperativity of the V(H) and V(L) domains of an antibody in antigen binding has been extensively studied, the interaction between the V(H) and V(L) domains had not received sufficient attention. To systematically investigate the relationship between the amino acid sequence and V(H)/V(L) interaction strength, we here used a set of anti-bovine serum albumin antibodies having a single human framework for V(H) (V3-23/DP-47 and JH4b) and Vk (O12/O2/DPK9 and Jk1), but with different V(H)/V(L) interaction strengths. By phage display of a V(H) mini-library and analysis of the interaction of amino acids with immobilized V(L) fragments, the residue at H95 (Kabat numbering) at the beginning of seven CDR H3 residues was found to play a key role in determining the V(H)/V(L) interaction. On saturation mutagenesis of H95, Gly showed the strongest interaction, while Asp, Asn, and Glu showed lesser interaction in that order. The generality of the rule was confirmed by the test with urine-derived human L chain instead of a particular V(L). The results demonstrate that H95 plays a central role in deciding the V(H)/V(L) interaction of human Fvs that have most commonly found frameworks.  相似文献   

9.
Jin H  Sepúlveda J  Burrone OR 《FEBS letters》2003,554(3):323-329
The antigen-binding surface of antibodies is formed by the heterodimerisation of the two variable domains of the light (V(L)) and heavy (V(H)) chains. We have previously described the spontaneous formation of V(H) dimers (VHD) in both bacteria and mammalian cells. The self-association of a single domain produces a homo-VHD, in which the two identical V(H) domains generate a unique symmetric surface for antigen binding that is never found in the normal V(L)/V(H) antibody binding site. We developed a phagemid vector for the construction of phage display libraries in which a cysteine residue, introduced at the C-terminus of the only V(H) cloned, allowed display of homo-VHDs. Panning of the library on different proteins yielded antigen specific binders against lysozyme, glutathione S-transferase and streptavidin. A lysozyme specific homo-VHD was further characterised with an apparent affinity determined to be 216+/-6.6 nM. Importantly, the results showed that its binding activity was fully dependent on the dimerisation of both identical V(H) domains.  相似文献   

10.
Titin is a very large (>3 MDa) protein found in striated muscle where it is believed to participate in myogenesis and passive tension. A prominent feature in the A-band portion of titin is the presence of an 11-domain super-repeat of immunoglobulin superfamily and fibronectin-type-III-like domains. Seven overlapping constructs from human cardiac titin, each consisting of two or three domains and together spanning the entire 11-domain super-repeat, have been expressed in Escherichia coli. Fluorescence unfolding experiments and circular dichroism spectroscopy have been used to measure folding stabilities for each of the constructs and to assign unfolding rates for each super-repeat domain. Immunoglobulin superfamily domains were found to fold correctly only in the presence of their C-terminal fibronectin type II domain, suggesting close and possibly rigid association between these units. The domain stabilities, which range from 8.6 to 42 kJ mol(-1) under physiological conditions, correlate with previously reported mechanical forces required to unfold titin domains. Individual domains vary greatly in their rates of unfolding, with a range of unfolding rate constants between 2.6 x 10(-6) and 1.2 s(-1). This variation in folding behavior is likely to be an important determinant in ensuring independent folding of domains in multi-domain proteins such as titin.  相似文献   

11.
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions.  相似文献   

12.
In this report we investigate the capacity of bacterial autotransporters (AT) to translocate folded protein domains across the outer membrane (OM). Polypeptides belonging to the AT family contain a C-terminal domain that supports the secretion of the N-domain (the passenger) across the OM of Gram-negative bacteria. Despite some controversial data, it has been widely accepted that N-passenger domains of AT must be unfolded and devoid of disulphide bonds for efficient translocation. To address whether or not AT are able to translocate folded protein domains across the OM, we employed several types of recombinant antibodies as heterologous N-passengers of the transporter C-domain of IgA protease (C-IgAP) of Neisseria gonorroheae. The N-domains used were single chain Fv fragments (scFv) and variable mono-domains derived from camel antibodies (V(HH)) selected on the basis of their distinct and defined folding properties (i.e. enhanced solubility, stability and presence or not of disulphide bonds). Expression of these hybrids in Escherichia coli shows that stable scFv and V(HH) domains are efficiently (>99%) translocated towards the bacterial surface regardless of the presence or not of disulphide bonds on their structure. Antigen-binding assays demonstrate that surface-exposed scFv and V(HH) domains are correctly folded and thus able to bind their cognate antigens. Expression of scFv- or V(HH)-C-IgAP hybrids in E. coli dsbA or fkpA mutant cells reveals that these periplasmic protein chaperones fold these N-domains before their translocation across the OM. Furthermore, large N-passengers composed of strings of V(HH) domains were secreted in a folded state by AT with no loss of efficacy (>99%) despite having multiple disulphide bonds. Thus AT can efficiently translocate toward the cell surface folded N-passengers composed of one, two or three immunoglobulin (Ig) domains, each with a folded diameter between approximately 2 nm and having disulphide bonds. This tolerance for folded protein domains of approximately 2 nm fits with the diameter of the central hydrophilic channel proposed for the ring-like oligomeric complex assembled by C-IgAP in the OM.  相似文献   

13.
The immune response to viral glycoproteins is often directed against conformation- and/or glycosylation-dependent structures; synthetic peptides and bacterially expressed proteins are inadequate probes for the mapping of such epitopes. This report describes a retroviral vector system that presents such native epitopes on chimeric glycoproteins in which protein fragments of interest are fused to the C terminus of the N-terminal domain of the murine leukemia virus surface protein, gp70. The system was used to express two disulfide-bonded domains from gp120, the surface protein of human immunodeficiency virus type 1 (HIV-1), that include potent neutralization epitopes. The resulting fusion glycoproteins were synthesized at high levels and were efficiently transported and secreted. A fusion protein containing the HXB2 V1/V2 domain was recognized by an HIVIIIB-infected patient serum as well as by 17 of 36 HIV-1 seropositive hemophiliac, homosexual male and intravenous drug user patient sera. Many of these HIV+ human sera reacted with V1/V2 domains from several HIV-1 clones expressed in fusion glycoproteins, indicating the presence of cross-reactive antibodies against epitopes in the V1/V2 domain. Recognition of gp(1-263):V1/V2HXB2 by the HIVIIIB-infected human patient serum was largely blocked by synthetic peptides matching V1 but not V2 sequences, while recognition of this construct by a broadly cross-reactive hemophiliac patient serum was not blocked by individual V1 or V2 peptides or by mixtures of these peptides. A construct containing the V3 domain of the IIIB strain of HIV-1, gp(1-263):V3HXB2, was recognized by sera from a human and a chimpanzee that had been infected by HIVIIIB but not by sera from hemophiliac patients who had been infected with HIV-1 of MN-like V3 serotype. The reactive sera had significantly higher titers when assayed against gp(1-263):V3HXB2 than when assayed against matching V3 peptides. Immunoprecipitation of this fusion glycoprotein by the human serum was only partially blocked by V3 peptide, indicating that this infected individual produced antibodies against epitopes in V3 that were expressed on the fusion glycoprotein but not by synthetic peptides. These data demonstrated that the chimeric glycoproteins described here effectively present native epitopes present in the V1/V2 and V3 domains of gp120 and provide efficient methods for detection of antibodies directed against native epitopes in these regions and for characterization of such epitopes.  相似文献   

14.
The betagamma-crystallin superfamily consists of a class of homologous two-domain proteins with Greek-key fold. Protein S, a Ca(2+)-binding spore-coat protein from the soil bacterium Myxococcus xanthus exhibits a high degree of sequential and structural homology with gammaB-crystallin from the vertebrate eye lens. In contrast to gammaB-crystallin, which undergoes irreversible aggregation upon thermal unfolding, protein S folds reversibly and may therefore serve as a model in the investigation of the thermodynamic stability of the eye-lens crystallins. The thermal denaturation of recombinant protein S (PS) and its isolated domains was studied by differential scanning calorimetry in the absence and in the presence of Ca(2+) at varying pH. Ca(2+)-binding leads to a stabilization of PS and its domains and increases the cooperativity of their equilibrium unfolding transitions. The isolated N-terminal and C-terminal domains (NPS and CPS) obey the two-state model, independent of the pH and Ca(2+)-binding; in the case of PS, under all conditions, an equilibrium intermediate is populated. The first transition of PS may be assigned to the denaturation of the C-terminal domain and the loss of domain interactions, whereas the second one coincides with the denaturation of the isolated N-terminal domain. At pH 7.0, in the presence of Ca(2+), where PS exhibits maximal stability, the domain interactions at 20 degrees C contribute 20 kJ/mol to the overall stability of the intact protein.  相似文献   

15.
M J Bogusky  C M Dobson  R A Smith 《Biochemistry》1989,28(16):6728-6735
Human urinary-type plasminogen activator (urokinase) and proteolytic fragments corresponding to the kringle, EGF-kringle, and protease domains have been examined by 1H NMR spectroscopy. The intact protein shows a very well-resolved spectrum for a molecule of this size (MW 54,000), with resonance line widths not greatly increased from those of the isolated domains. On increasing the temperature, the protein at pH values close to 4 was found to undergo two distinct and reversible conformational transitions. These were identified, by comparison with spectra of the proteolytic fragments, as the unfolding of the kringle (and EGF) domains (at approximately 42 degrees C) and of a segment of the protease domain (at approximately 60 degrees C). The remaining segment of the protease domain showed persistent structure to at least 85 degrees C at pH 4; only at lower pH values could complete unfolding be achieved. The results indicate that the structures and stabilities of the isolated domains are closely similar to those in the intact protein and suggest that there is a degree of independent motion at least between the kringle and protease domains.  相似文献   

16.
Monoclonal antibodies are a remarkably successful class of therapeutics used to treat a wide range of indications. There has been growing interest in smaller antibody fragments such as Fabs, scFvs and domain antibodies in recent years. In particular, the development of human VH and VL single-domain antibody therapeutics, as stand-alone affinity reagents or as “warheads” for larger molecules, are favored over other sources of antibodies due to their perceived lack of immunogenicity in humans. However, unlike camelid heavy-chain antibody variable domains (VHHs) which almost unanimously resist aggregation and are highly stable, human VHs and VLs are prone to aggregation and exhibit poor solubility. Approaches to reduce VH and VL aggregation and increase solubility are therefore very active areas of research within the antibody engineering community. Here we extensively chronicle the various mutational approaches that have been applied to human VHs and VLs to improve their biophysical properties such as expression yield, thermal stability, reversible unfolding and aggregation resistance. In addition, we describe stages of the VH and VL development process where these mutations could best be implemented. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

17.
The thermal triple helix to coil transitions of two human type V collagens (alpha 1(2) alpha 2 and alpha 1 alpha 2 alpha 3) and bovine type XI collagen differ from those of the interstitial collagens type I, II, and III by the presence of unfolding intermediates. The total transition enthalpy of these collagens is comparable to the transition enthalpy of the interstitial collagens with values of 17.9 kJ/mol tripeptide units for type XI collagen, 22.9 kJ/mol for type V (alpha 1(2) alpha 2), and 18.5 kJ/mol for type V (alpha 1 alpha 2 alpha 3). It is shown by optical rotatory dispersion and differential scanning calorimetry that complex transition curves with stable intermediates exist. Type XI collagen has two main transitions at 38.5 and 41.5 degrees C and a smaller transition at 40.1 degrees C. Type V (alpha 1(2) alpha 2) shows two main transitions at 38.2 and 42.9 degrees C and two smaller transitions at 40.1 and 41.3 degrees C. Compared to these two collagens type V (alpha 1 alpha 2 alpha 3) unfolds at a lower temperature with two main transitions at 36.4 and 38.1 degrees C and two minor transitions at 40.5 and 42.9 degrees C. The intermediates present at different temperatures are characterized by resistance to trypsin digestion, length measurements of the resistant fragments after rotary shadowing, and amino-terminal sequencing. One of the intermediate peptides has been identified as belonging to the alpha 2 type V chain, starting at position 430 and being about 380 residues long. (The residue numbering begins with the first residue of the first amino-terminal tripeptide unit of the main triple helix. The alpha 2(XI) chain was assumed to be the same length as the alpha 1(XI). One intermediate was identified from the alpha 2(XI) chain and with starting position at residue 495, and three from the alpha 3(XI) with starting positions at residues 519, 585, and 618.  相似文献   

18.
Changes in the conformational state of human plasma fibronectin and several of its fragments were studied by fluorescence emission, intrinsic fluorescence polarization and c.d. spectroscopy under conditions of guanidinium chloride-and temperature-induced unfolding. Fragments were chosen to represent all three types of internal structural homology in the protein. Low concentration (less than 2 M) of guanidinium chloride induced a gradual transition in the intact protein that was not characteristic of any of the isolated domains, suggesting the presence of interdomain interactions within the protein. Intermediate concentrations of guanidinium chloride (2-3 M) and moderately elevated temperatures (55-60 degrees C) induced a highly co-operative structural transition in intact fibronectin that was attributable to the central 110 kDa cell-binding domain. High temperatures (greater than 60 degrees C) produced a gradual unfolding in the intact protein attributable to the 29 kDa N-terminal heparin-binding and 40 kDa collagen-binding domains. Binding of heparin to intact fibronectin and to its N-terminal fragment stabilized the proteins against thermal unfolding. This was reflected in increased delta H for the unfolding transitions of the heparin-bound N-terminal fragment, as well as decreased accessibility to solvent perturbants of internal chromophores in this fragment when bound to heparin. These results help to account for the biological efficacy of the interaction between the fibronectin N-terminal domain and heparin, despite its relatively low affinity.  相似文献   

19.
Sedimentation analysis in the analytical ultracentrifuge has been used to characterize the size and shape of thermolysin and a number of its fragments obtained by chemical or enzymatic cleavage of the protein. Four fragments (121-316, 206-316, 225/226-316 and 255-316) originate from the C-terminal domain, and two (1-155 and 1-205) from the N-terminal domain of the intact molecule. In aqueous solution at neutral pH the hydrodynamic properties of the C-terminal fragments, except 255-316, are consistent with compact homogeneous monomers. Fragment 255-316 is a monomeric species below 0.08 mg/ml concentration and forms a dimer above this concentration. Dimerization does not lead to changes in fragment conformation, as determined by far-ultraviolet circular dichroic measurements, but to an increase of 5.6 degrees C (to 68.2 degrees C at 1.0 mg/ml) in the temperature for thermal unfolding and a corresponding increase of 4.6 kJ/mol in the free energy of unfolding. Fragments derived from the N-terminal domain show a strong tendency to form high-molecular-mass aggregates. Previous experiments utilizing circular dichroic measurements and antibody binding data suggested that the C-terminal fragments listed above are able to refold in aqueous solution at neutral pH into a stable conformation of native-like characteristics [Dalzoppo, D., Vita, C. & Fontana, A. (1985) J. Mol. Biol. 182, 331-340] (and references cited therein). Present data establish that all these C-terminal fragments are globular monomeric species in solution (at concentrations approximately 0.1 mg/ml) and thus represent 'isolated' domains (or subdomains) with intrinsic conformational stability typical of small globular proteins.  相似文献   

20.
Protein S from Myxococcus xanthus is a member of the beta gamma-crystallin superfamily. Its N and C-terminal domains (NPS and CPS, respectively) show a high degree of structural similarity and possess the capacity to bind two calcium ions per domain. For NPS, their positions were determined by X-ray diffraction at 1.8 A resolution, making use of molecular replacement with the NMR structure as search model. The overall topology of NPS is found to be practically the same as in complete protein S. In natural protein S, the domains fold independently, with a significant increase in stability and cooperativity of folding in the presence of Ca2+. The recombinant isolated domains are stable monomers which do not show any tendency to combine to "nicked" full-length protein S. In order to investigate the stability and folding of natural protein S and its isolated domains, spectroscopic techniques were applied, measuring the reversible urea and temperature-induced unfolding transitions at varying pH. The increment of Ca2+ to the free energy of stabilization amounts to -10 and -5 kJ/mol for NPS and CPS, respectively. For both NPS and CPS, in the absence and in the presence of 3 mM CaCl2, the two-state model is valid. Comparing DeltaGU-->N for CPS (-21 kJ/mol at pH 7, liganded with Ca2+) with its increment in the intact two-domain protein, the stability of the isolated domain turns out to be decreased in a pH-dependent manner. In contrast, the stability of Ca2+-loaded NPS (DeltaGU-->N=-31 kJ/mol, pH 7) is nearly unchanged down to pH 2 where Ca2+ is released (DeltaGU-->N=-26 kJ/mol, pH 2). In intact protein S, the N-terminal domain is destabilized relative to NPS. Evidently, apart from Ca2+ binding, well-defined domain interactions contribute significantly to the overall stability of intact protein S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号