共查询到19条相似文献,搜索用时 93 毫秒
1.
ErbB受体亚族属于受体型酪氨酸激酶(RTK)超家族中的I亚族,对于胚胎发育是必需的,并与腺体肿瘤的癌变有关。ErbB受体亚族有4个成员,它们在上皮和神经等组织内表达。本综述了ErbB受体亚族的研究概况,以及ErbB受体介导的信号转导机制及其在癌变中的作用机理等研究进展。 相似文献
2.
酪氨酸蛋白激酶型受体亚族的研究概况 总被引:2,自引:0,他引:2
已知许多生长因子的效应通过高亲和性受体酪氨酸激酶(Receptor Tyrosine Kinase,RTK)所介导。RTK信号通路,与已确认的第二信使系统即cAMP系统、Ca~(2 )系统和肌醇磷脂信号系统相互作用,相互协调以进行生物体正常生理活动。10年来,先后证实有9类RTK亚族(图1),各亚族成员以其独特的结构特点区别于其他亚族。 尽管RTK亚族间存在差异,但就信号发放途径而言,在很大程度上表现出共同性。配体结合胞外区城后,激活胞浆的酪氨酸激酶,导致下游大量共同发信号分子活化。经常受到激活的这类蛋白质有:磷脂酶C-γ(PLC-γ)、 相似文献
3.
Eph受体家族及其配体的信号转导途径及功能 总被引:5,自引:1,他引:4
Eph受体是已知最大的酪氨酸蛋白激酶受体家族,Eph受体和其膜附着型配体(ephrin)在发育过程中呈现不同的表达模式,近来研究证明,Eph受体和其配体在包括神经网络形成,神经管和轴旁中胚层的成型(patterning),细胞迁移导向和轴突路径导引,血管形成等许多的发育过程中起重要作用.Eph受体及其配体也与肿瘤发生有关,因此深入分析这些分子尤其在肿瘤细胞生长中的功能而应用于治疗具有重要的临床意义. 相似文献
4.
受体酪氨酸激酶(receptor tyrosine kinases ,RTKs)为一类细胞表面跨膜蛋白,在介导细胞外信号向胞内传导过程中起重要作用.目前已发现约60种RTKs,按照受体与配体特征将其分为20个亚家族,其中Tyro3受体酪氨酸激酶亚家族由三个成员组成:Tyro3 (又名Rse, Sky, Brt, Dtk, Etk2或Tif)[1-3]、Axl (又名Ufo,Ark或Tyro7)[4-6]和Mer (又名Nyk ,Eyk或Tyro12)[1,7-9].其分子均由胞外区、胞内区和跨膜区三部分组成,为单次跨膜蛋白,在人或动物的多种组织中广泛表达.它们具有共同的配体:Gas6和Protein S.Tyro3受体酪氨酸激酶亚家族在调节细胞的增殖与分化中起着重要作用,然而其确切的功能和作用机理尚不清楚.目前该领域的研究越来越受到人们的重视,并正取得较大的进展.本文旨在综述Tyro3受体酪氨酸激酶亚家族及其配体的发现、特征及最新的研究进展,为从事该领域研究的工作者提供参考资料. 相似文献
5.
王涛锋 《国外医学:分子生物学分册》1999,21(2):114-117
Axl家族是一个比较新的受体酪氨酸激酶家族,成员包括Axl、Mer及Rse等几个分子、结构很特征;胞浆区与神经细胞粘附分子结构相似,胞膜外区具备酪氨酸激酶活性,这类分子在一此正常组织,恶变组织中都有表达,研究发现它们在组织的成长,发育及恶变中都有一定作用。 相似文献
6.
7.
属于Ⅲ类酪氨酸激酶受体家族成员的FLT3/FLK2已分别在人和小鼠得到克隆和表达。该受体在造血早期干祖细胞上表达较丰富,在其他组织也见有表达。小鼠FLT3/FLK2cDNA长3453bp,编码990aa的多肽。人与小鼠FLT3/FLK2的蛋白质序列有86%同源。 相似文献
8.
二聚化:受体酪氨酸激酶活化的重要机制 总被引:1,自引:0,他引:1
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构 ,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化 ,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制 ,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化 相似文献
9.
本研究旨在探讨Eph/Ephrin-B1信号对急性分离的鸡胚睫状神经节(ciliary ganglion,CG)神经元上α3-尼古丁乙酰胆碱受体(nicotinic acetylcholine receptors,α3-nAChRs)和α7-尼古丁乙酰胆碱受体(nicotinic acetylcholine receptors,α7-nAChRs)电流的影响及可能机制.用膜片钳技术在急性分离的CG神经元上分别记录α3-nAChRs和α7-nAChRs全细胞电流.为检测Ephrin-B1对细胞nAChRs电流的影响,细胞被随机分为:对照组、Ephrin-B1Fc处理组(用Ephrin-B1与IgG重组后形成的Ephrin-B1Fc刺激细胞)、IgG处理组(用与Ephrin-B1Fc处理组重组所需的相同浓度的IgG刺激细胞)和Ephrin-B1处理组(用与Ephrin-B1Fc处理组重组所需的相同浓度的Ephrin-B1刺激细胞).为探讨Ephrin-B1调节细胞nAChRs电流的机制,分别用Src信号抑制剂PP2和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号抑制剂PD98095预处理细胞后,再用Ephrin-B1Fc处理细胞,观察α3-nAChRs和α7-nAChRs电流的变化,细胞被随机分为:对照组、Ephrin-B1Fc处理组、PP2或PD98095(PP2/PD)处理组、Ephrin-B1Fc PP2或PD98095处理组.结果显示:对照组、IgG处理组和Ephrin-B1处理组之间α3-nAChRs和α2-nAChRs电流无显著差异,而Ephrin-B1Fc处理组可显著抑制α3-nAChRs和α7-nAChRs电流,与对照组比较有显著差异(P=0.002、P=0.003);此外,PP2可部分恢复被Ephrin-B1Fc所抑制的α7-nAChRs电流,PD98095则可部分恢复被Ephrin-B1Fc所抑制的α3-nAChRs电流.以上结果提示,Eph/Ephrin-B1信号可能分别通过MAPK和Src信号途径抑制急性分离的CG神经元上α3-nAChRs和α7-nAChRs的电流,表明Eph/Ephrin-B1可能参与交感神经系统功能的调控. 相似文献
10.
G蛋白偶联受体转激活酪氨酸激酶受体机制 总被引:1,自引:0,他引:1
G蛋白偶联受体(G-protien coupled receptors,GPCRs)和酪氨酸激酶受体(receptor tyrosine kinases,RTKs)是体内两类重要的受体家族,介导着绝大多数信号事件。GPCRs能够"绑架"RTKs进行信号转导,即GPCRs能够在没有外加RTKs配体的情况下激活RTKs,这种现象称为转激活。作为转激活的核心过程,GPCR调控RTK磷酸化主要采取RTK配体依赖模式和非RTK配体依赖模式。不同的G蛋白亚型、酪氨酸磷酸激酶、酪氨酸磷酸酶(protein-tyrosine phosphatases,PTPs)以及活性氧自由基(reactiveoxygen species,ROS)均在此过程中具有重要作用。GPCR和RTK还能形成信号复合体(signaling complex)从而实现蛋白质之间的动态相互作用。对转激活的研究为GPCR靶点药物开发提供了新思路。 相似文献
11.
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells. 相似文献
12.
Mark R. Bowlby Debra A. Fadool Todd C. Holmes Irwin B. Levitan 《The Journal of general physiology》1997,110(5):601-610
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (α-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the α-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel. 相似文献
13.
以GFP融合表达的形式在毕赤酵母中表达具有生物活性的受体酪氨酸激酶ErbB2的激酶区.构建受体酪氨酸激酶激酶区与GFP的融合表达载体pPIC3.5K,转化毕赤酵母GS115,通过组氨酸营养缺陷型筛选,G418高拷贝菌株筛选,以及摇瓶诱导表达筛选,选取较高水平表达菌株进行5升罐培养,以镍亲和层析手段纯化得到蛋白表达产物,进行SDS-PAGE分析和酶联免疫反应检测酶活.结果表明在毕赤酵母中成功诱导表达了约100kD的激酶融合蛋白并具有激酶活性.该研究为筛选ErbB2的抑制剂奠定了基础. 相似文献
14.
The energetics of transmembrane (TM) helix dimerization in membranes and the thermodynamic principles behind receptor tyrosine kinase (RTK) TM domain interactions during signal transduction can be studied using Förster resonance energy transfer (FRET). For instance, FRET studies have yielded the stabilities of wild-type fibroblast growth factor receptor 3 (FGFR3) TM domains and two FGFR3 pathogenic mutants, Ala391Glu and Gly380Arg, in the native bilayer environment. To further our understanding of the molecular mechanisms of deregulated FGFR3 signaling underlying different pathologies, we determined the effect of the Gly382Asp FGFR3 mutation, identified in a multiple myeloma cell line, on the energetics of FGFR3 TM domain dimerization. We measured dimerization energetics using a novel FRET acquisition and processing method, termed “emission-excitation FRET (EmEx-FRET),” which improves the precision of thermodynamic measurements of TM helix association. The EmEx-FRET method, verified here by analyzing previously published data for wild-type FGFR3 TM domain, should have broad utility in studies of protein interactions, particularly in cases when the concentrations of fluorophore-tagged molecules cannot be controlled. 相似文献
15.
Konstantin S. Mineev Yulia E. Pustovalova Olga V. Bocharova Vladimir V. Chupin Alexander S. Arseniev 《Journal of molecular biology》2010,400(2):231-243
Growth factor receptor tyrosine kinases of the ErbB family play a significant role in vital cellular processes and various cancers. During signal transduction across plasma membrane, ErbB receptors are involved in lateral homodimerization and heterodimerization with proper assembly of their extracellular single-span transmembrane (TM) and cytoplasmic domains. The ErbB1/ErbB2 heterodimer appears to be the strongest and most potent inducer of cellular transformation and mitogenic signaling compared to other ErbB homodimers and heterodimers. Spatial structure of the heterodimeric complex formed by TM domains of ErbB1 and ErbB2 receptors embedded into lipid bicelles was obtained by solution NMR. The ErbB1 and ErbB2 TM domains associate in a right-handed α-helical bundle through their N-terminal double GG4-like motif T648G649X2G652A653 and glycine zipper motif T652X3S656X3G660, respectively. The described heterodimer conformation is believed to support the juxtamembrane and kinase domain configuration corresponding to the receptor active state. The capability for multiple polar interactions, along with hydrogen bonding between TM segments, correlates with the observed highest affinity of the ErbB1/ErbB2 heterodimer, implying an important contribution of the TM helix-helix interaction to signal transduction. 相似文献
16.
《Cell communication & adhesion》2013,20(4-5):327-339
Sponges [Porifera] are the phylogenetically oldest phylum of the Metazoa. They are provided with both cellular and humoral allorecognition systems. The underlying molecules are not yet known. To study allorecognition in sponges we first determined the frequency of graft rejection in a natural population of the marine sponge Geodia cvdonium. We then determined, for the first time at the molecular level, the degree of sequence polymorphism in segments of one molecule which may be related to sponge allorecognition and host defense: the Ig-like domains from the receptor tyrosine kinase [RTK]. Thirty six pairs of auto- and allografts were assayed, either by parabiotic attachment or insertion of grafts. All of the autografts fused, while only two allografts fused and 34 pairs were incompatibile. Rejection among the parabiotic allografts was characterized by the formation of a collagenous barrier, while the allografts that were inserted into the host underwent destruction. At the molecular level we first cloned to completion the 5′-end of sponge RTK, which displays a Pro-Ser-Thr-rich sequence; this is thought to act as a module of cell adhesion proteins. Then we analyzed RT-PCR products of amplification across the two Ig-like domains of RTK (about 500 bp), from two pairs of fusing sponges and one pair of rejecting sponges. High levels of polymorphism were recorded, including 18 nucleotide-substitution positions and a tri-nucleotide deletion, which translate into 13 polymorphic amino acid positions. Two of the six sponges were scored as heterozygotes. Among 9 informative polymorphic sites that were tested for linkage disequilibrium, 11 pairwise comparisons were found to be significant, implying the possibility of distinguishable alleles in this locus. To the best of our knowledge this is the first report of polymorphism in Ig-like domains of a receptor from invertebrates that may be associated with allorecognition. This data attests also that fusion in sponges is not confined to genetically identical individuals. 相似文献
17.
Zeev Pancer Michael Kruse Heike Sch cke Ute Scheffer Renate Steffen P ter Kov cs Werner E. G. Mü ller 《Cell communication & adhesion》1996,4(4):327-339
Sponges [Porifera] are the phylogenetically oldest phylum of the Metazoa. They are provided with both cellular and humoral allorecognition systems. The underlying molecules are not yet known. To study allorecognition in sponges we first determined the frequency of graft rejection in a natural population of the marine sponge Geodia cvdonium. We then determined, for the first time at the molecular level, the degree of sequence polymorphism in segments of one molecule which may be related to sponge allorecognition and host defense: the Ig-like domains from the receptor tyrosine kinase [RTK]. Thirty six pairs of auto- and allografts were assayed, either by parabiotic attachment or insertion of grafts. All of the autografts fused, while only two allografts fused and 34 pairs were incompatibile. Rejection among the parabiotic allografts was characterized by the formation of a collagenous barrier, while the allografts that were inserted into the host underwent destruction. At the molecular level we first cloned to completion the 5'-end of sponge RTK, which displays a Pro-Ser-Thr-rich sequence; this is thought to act as a module of cell adhesion proteins. Then we analyzed RT-PCR products of amplification across the two Ig-like domains of RTK (about 500 bp), from two pairs of fusing sponges and one pair of rejecting sponges. High levels of polymorphism were recorded, including 18 nucleotide-substitution positions and a tri-nucleotide deletion, which translate into 13 polymorphic amino acid positions. Two of the six sponges were scored as heterozygotes. Among 9 informative polymorphic sites that were tested for linkage disequilibrium, 11 pairwise comparisons were found to be significant, implying the possibility of distinguishable alleles in this locus. To the best of our knowledge this is the first report of polymorphism in Ig-like domains of a receptor from invertebrates that may be associated with allorecognition. This data attests also that fusion in sponges is not confined to genetically identical individuals. 相似文献
18.
Ret:一种受体酪氨酸激酶及其基因突变与疾病 总被引:6,自引:0,他引:6
RET是一个在转化中发生重排的原癌基因,且因此行为而得名.它编码细胞膜受体酪氨酸激酶,初步研究表明它介导的信号转导途径较为独特.RET基因突变与人类4种癌症的发生相关:甲状腺乳头状腺癌存在RET基因与其他基因多种重排;多发性内分泌腺瘤2型,家族遗传甲状腺髓样癌等存在7个位点点突变;先天巨结肠疾病与RET基因缺失相关.因此近年来备受关注.对Ret蛋白的结构功能,RET基因突变对Ret蛋白功能的影响及与人类相关疾病的关系作一综述. 相似文献
19.
Helmy E. van Erp Gert Rijksen Cees W. M. van Veelen Jessica H. W. van der Heijden Benedikte N. B. Maarschalkerweerd Gerard E. J. Staal 《Journal of neurochemistry》1992,58(2):554-561
Tyrosine kinase activity was determined in neonatal and adult human brain, oligodendrogliomas, and astrocytomas. The astrocytomas were divided into low- (grade I and grade II) and high-grade (grade III and grade IV) tumors. We measured the tyrosine kinase activity in the cytosolic and membrane fraction using poly(glutamic acid:tyrosine, 4:1) as an artificial substrate. The cytosolic activity in oligodendrogliomas (n = 7), low-grade astrocytomas (n = 7), and neonatal brain (n = 1) was increased, on average, two- to fourfold compared with that in normal adult brain (n = 14). The cytosolic activities of high-grade astrocytomas (n = 11) were in approximately the same range as found in normal adult brain. The absence of an increase in cytosolic activity in high-grade astrocytomas compared with adult brain is likely due to the occurrence of necrosis in these tumors. In contrast to the cytosolic activity, no differences were found in the membrane-bound activity. By fast protein liquid chromatography, at least three forms of cytosolic protein tyrosine kinase could be separated, which eluted at 0, 115, and 210 mM NaCl. In most cases the highest amount of activity eluted at 210 mM NaCl. However, in oligodendrogliomas, high-grade astrocytomas, and neonatal brain, more activity eluted at 115 mM NaCl than in normal adult brain (p = 0.043). Nevertheless, protein tyrosine kinases from all three peaks contributed to the elevated levels of total cytosolic activity of oligodendrogliomas and low-grade astrocytomas. 相似文献